首页 > 其他 > 详细

时间序列ARIMA模型

时间:2020-01-05 19:07:41      阅读:109      评论:0      收藏:0      [点我收藏+]

时间序列ARIMA模型

1、数据的平稳性与差分法

技术分享图片

 技术分享图片

让均值和方差不发生明显的变化(让数据变平稳),用差分法

 技术分享图片

 技术分享图片

 

2、ARIMA模型-----差分自回归平均移动模型

技术分享图片

求解回归的经典算法:最大似然估计、最小二乘法

 技术分享图片

 

技术分享图片

 

 技术分享图片

在具体运用时,需要指定三个参数,即(p,d,q);

其中:p表示自回归的阶数,

      d表示做几阶差分(一般做一阶差分),

      q表示平均移动模型的阶数

 

技术分享图片

 

3、相关函数的评估方法

选择p和q

自相关函数ACF(Autocorrelation Function)

        (1)有序的随机变量序列 与其自身进行比较

        (2)自相关函数反映了同一序列在不同时序的取值之间的相关性。

技术分享图片

其中:虚线表示置信区间

 

偏自相关函数PACF(Partial Autocorrelation Function)

技术分享图片

 

4、建立ARIMA模型

 技术分享图片

注意:

  通过PACF函数的图可以得知p的取值

  通过ACF函数的图得知q的取值

截尾:可以允许有少部分的离群点

技术分享图片

 

使用ARIMA建模的流程:

(1)    将序列平稳----通过差分法确定d

(2)    P和q阶数的确定----通过ACF和PACF

(3)    ARIMA(p,d,q)

 

5、  参数选择

AIC、BIC的值都是越低越好-----主要就是保证精度的准则下,k的值尽量小

 技术分享图片

 技术分享图片

QQ图:观察所绘制出的图是否是一条直线,若是,则符合正态分布;

时间序列ARIMA模型

原文:https://www.cnblogs.com/Cheryol/p/12153156.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!