https://vjudge.net/problem/POJ-3678
Katu Puzzle is presented as a directed graph G(V, E) with each edge e(a, b) labeled by a boolean operator op (one of AND, OR, XOR) and an integer c (0 ≤ c ≤ 1). One Katu is solvable if one can find each vertex Vi a value Xi (0 ≤ Xi ≤ 1) such that for each edge e(a, b) labeled by op and c, the following formula holds:
Xa op Xb = c
The calculating rules are:
AND 0 1
0 0 0
1 0 1
OR 0 1
0 0 1
1 1 1
XOR 0 1
0 0 1
1 1 0
Given a Katu Puzzle, your task is to determine whether it is solvable.
枚举每用到的两个点,当不满足的时候加另外两种情况进图。
找出不能同时存在的情况,表示另外的情况必须存在。
//#include<bits/stdc++.h>
#include<iostream>
#include<string>
#include<cstdio>
#include<vector>
#include<string.h>
#include<cstring>
#include<set>
#include<queue>
#include<algorithm>
#include<math.h>
#include<stdio.h>
#include<map>
#include<stack>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
const int MOD = 20071027;
const int MAXN = 1e3+10;
int Next[4][2] = {-1, 0, 0, 1, 1, 0, 0, -1};
int Map[MAXN][MAXN];
int Val[MAXN][MAXN];
vector<int> G[MAXN*2], Gt[MAXN*2];
int sccnum[MAXN*2], dfn[MAXN*2], low[MAXN*2];
int opp[MAXN*2], disin[MAXN*2], col[MAXN*2];
stack<int> St;
int n, m, scc_cnt, dfn_clock;
void tarjan(int u)
{
dfn[u] = low[u] = ++dfn_clock;
St.push(u);
for (int i = 0;i < (int)G[u].size();i++)
{
int v = G[u][i];
if (!dfn[v])
{
tarjan(v);
low[u] = min(low[u], low[v]);
}
else if (!sccnum[v])
low[u] = min(low[u], dfn[v]);
}
if (low[u] == dfn[u])
{
++scc_cnt;
while(true)
{
int x = St.top();
St.pop();
sccnum[x] = scc_cnt;
if (x == u)
break;
}
}
}
bool solve()
{
memset(dfn, 0, sizeof(dfn));
memset(low, 0, sizeof(low));
memset(sccnum, 0, sizeof(sccnum));
dfn_clock = scc_cnt = 0;
for (int i = 0;i < 2*n;i++)
if (!dfn[i]) tarjan(i);
for (int i = 0;i < 2*n;i+=2)
{
if (sccnum[i] == sccnum[i+1])
return false;
}
return true;
}
bool check(int l1, int r1, int l2, int r2)
{
if (r1 <= l2 || r2 <= l1)
return false;
return true;
}
void tupo()
{
memset(disin, 0, sizeof(disin));
memset(col, -1, sizeof(col));
for (int i = 0;i < 2*n;i++) Gt[i].clear();
for (int i = 0;i < 2*n;i++)
{
for (int j = 0;j < (int)G[i].size();j++)
{
int to = G[i][j];
if (sccnum[i] == sccnum[to]) continue;
Gt[sccnum[to]].push_back(sccnum[i]);
disin[sccnum[i]]++;
}
}
queue<int> que;
for (int i = 1;i <= scc_cnt;i++)
if (!disin[i]) que.push(i);
while(!que.empty())
{
int u = que.front();
que.pop();
if (col[u] == -1)
{
col[u] = 1;
col[opp[u]] = 0;
}
for (int i = 0;i < (int)Gt[u].size();i++)
{
int to = Gt[u][i];
if (--disin[to] == 0)
que.push(to);
}
}
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(0), cout.tie(0);
while(cin >> n >> m)
{
memset(Map, 0, sizeof(Map));
memset(Val, 0, sizeof(Val));
for (int i = 0;i < 2*n;i++)
G[i].clear();
int a, b, c;
char op[10];
for (int i = 1;i <= m;i++)
{
cin >> a >> b >> c >> op;
for (int va = 0;va <= 1;va++)
{
for (int vb = 0;vb <= 1;vb++)
{
int tmp;
if (op[0] == 'A')
tmp = va&vb;
if (op[0] == 'O')
tmp = va|vb;
if (op[0] == 'X')
tmp = va^vb;
if (tmp != c)
{
G[a*2+va].push_back((b*2+vb)^1);
G[b*2+vb].push_back((a*2+va)^1);
}
}
}
}
if (solve())
cout << "YES\n" ;
else
cout << "NO\n" ;
}
return 0;
}
POJ - 3678 - Katu Puzzle(2SAT)
原文:https://www.cnblogs.com/YDDDD/p/12153375.html