这学期的课程内容,原本想要整理一下的,但笔记有点乱,另外这门课注重数理推导所以公式有点多;因此只整理习题课上的提纲,基本上覆盖了这学期的主要内容(主要是因为自己懒??)。
Unbiased: \(E[\hat\theta]=\theta\)
\(H_0: \theta\in\Theta_0\leftrightarrow H_1:\theta\in\Theta_0^C\)
e.g. normal dist. \(x_1...x_n\sim N(\theta,1)\), estimate the para
Model: \(Y=X\beta+\epsilon\)
Fitted Model of Y: \(\hat Y=Xb=X(X^TX)^{-1}X^TY\overset{\triangle}{=}HY\)
Residual: \(e=Y=\hat Y=(I-H)Y\)
Residual sum of squares: \(SSE=Y^T(I-H)Y\)
Estimator of \(\sigma^2\): \(\hat\sigma^2\overset{\triangle}{=}s^2={SSE\over n-k-1}\), unbiased
Distribution of \(b\) and \(s^2\):
\[
b\sim N(\beta, \sigma^2(X^TX)^{-1})\(n-k-1)s^2\sim\sigma^2 \chi^2(n-k-1)\{SSE\over \sigma^2}={(n-k-1)s^2\over\sigma^2}\sim\chi^2(n-k-1)\\]
Sum of Squares | Degree of Freedom |
---|---|
Total: \(SST=\sum(y_i-\hat y)^2=Y^T(I-{1\over n}11^T)Y\) | \(df_T=n-1\) |
Regression: \(SSR\sum(\hat y_i-\bar y)^2=Y^T(H-{1\over n}11^T)Y\) | \(df_R=k\) |
Residual: \(SSE=\sum(y_i-\hat y_i)^2=Y^T(I-H)Y\) | \(df_E=n-1-k\) |
\(SSR=SSR+SSE\) | \(df_t=df_R+df_E\) |
\[ F={SSR/\sigma^2k\over SSE/\sigma^2(n-k-1)}={MSR\over MES}\sim F_{k,n-k-1} \]
Reject \(H_0\), when \(F>F_{k,n-k-1}(1-\alpha)\)
\[ {b_i-\beta_j\over\sqrt{\sigma^2(X^TX)^{-1}_{j+1,j+1}}}\sim N(0,1) \]
Under \(H_0\)
\[
{b_i\over\sqrt{\sigma^2(X^TX)^{-1}_{j+1,j+1}}}\sim N(0,1)
\]
\[ R^2={SSR\over SST}\in[0,1]\R^2_\alpha=1-{SSE/(n-k-1)\over SST/(n-1)} \]
e.g.
given values \(x_0=(1,x_{01},...,x_{0k})^T\), \(x_0^T\beta\) CI
\[
{x_0^Tb-x_0^T\beta\over\sigma\sqrt{x_0^T(X^TX)^{-1}_{j+1,j+1}x_0}}\sim N(0,1)\{x_0^Tb-x_0^T\beta\over s \sqrt{x_0^T(X^TX)^{-1}_{j+1,j+1}x_0}}\sim t_{n-k-1}\\]
so the \(1-\alpha\) CI for \(x_0^T\beta\) is \([x_0^T\pm t_{n-k-1}(\alpha/1)s\sqrt{x_0^T(X^TX)^{-1}x_0}]\)
e.g.
CI for a new ovservation
e.g.
\(H_0: C\beta=0\), where \(C\in R^{d\times (k+1)}\)
The test statistic is
\[
F={SSE_R-SSE_F/d\over SSE_F/(n-k-1)}\sim F_{d,n-k-1}
\]
if \(F>F_{d-,n-k-1}(\alpha)\), regect \(H_0\)
\(SSE_F\): SSE under the full model
\(SSE_R\): SSE under the reduced model: \(Y=X\beta+\epsilon, C\beta=0\)
\[ SSE_R-SSE_F=b^TC^T(C(X^TX)^{-1}C^T)^{-1}Cb \]
\[ C_p={SSE\over s^2}-(n-2p+1)\AIC=n\log(SSE(p))+2p \]
Model: \(y_1,..y_n\) iid. binary observations \(y_i\)=1with prob. \(p_i\) and \(=0\) with prob. \(1-p_i\)
\[
logit(p_i)=\log{p_i\over 1-p_i}=\beta^Tx_i\p_i={\exp(\beta^T x_i)\over 1+\exp(\beta^T x_i)}
\]
MLE for $?p_i$(as for \(\beta\)):
\[
l(\beta)=\sum y_i\log(p_i)+(1-y_i)\log(1-p_i)\\hat\beta=\arg\max_\beta l(\beta)
\]
GLM:
\[ g(EY)=X\beta \]
\(X\beta\): linear predictor
\(g\): link func.
\[ f_\lambda(x)=e^{\lambda x-r(\lambda)}f_0(x), \lambda\in\Lambda \]
Normal, Poisson, Binary, Gamma
e.g.: Gamma dist:
\[
f(x)={\beta^\alpha\over \Gamma(\alpha)}x^{\alpha-1}e^{-\beta x}, x>0\=\exp(\alpha \log(\beta)+(\alpha\log(x)-\beta x-\log\Gamma(x)))={x^{\alpha-1}\over\Gamma(\alpha)}e^{-\beta x +\alpha\log\beta}
\]
Moment generating func.
\[
\varphi(t)=Ee^{tX}\\varphi'(t)|_{t=0}=Ee^{tX}X|_{t=0}=EX\\varphi''(t)|_{t=0}=Ee^{tX}X^2|_{t=0}=EX^2\\]
\[ Var(X)=\varphi''(0)=\varphi'(0)^2 \]
For \(X\sim\) exponential family, \(EX=r'(\lambda), Var(X)=r''(\lambda)\)
A key idea in GLM is respresent \(\lambda_1,...,\lambda_n\) as a linear equation
\[
\lambda=X\beta\\lambda_i=x_i^T\beta
\]
density func. of \(y\) is
\[
\prod f_{\lambda_i}(y_i)=\prod e^{\lambda_iy_i-r(\lambda_i)}f_0(y_i)\=\exp(\sum \lambda_i y_i-r(\lambda_i))\prod f_o(y_i)
\]
\[ \sum \lambda_i y_i=\lambda^Ty=\beta^TX^Tz=\beta^Tz\\sum r(\lambda_i)=\sum r(x_i^T\beta) \]
\[ \prod f_{\lambda_i}(y_i)=\exp(\beta^Tz-\sum r(x_i^T \beta))\prod f_0(y_i)\=\exp(\beta^Tz-\varphi(\beta))f_0(y) \]
where \(\varphi(\beta)=\sum r(x_i^T\beta), f_0(y)=\prod f_0(y_i)\)
\[
\varphi'(\beta)=\sum r'(x_i^T\beta)x_i=\sum r'(\lambda_;)x_i=(x_1,...,x_n)(r'(\lambda_1),..,r'(\lambda_n))^T=X^T\mu(\beta)
\]
loglikelihood:
\[
l_\beta(y)=\beta^Tz-\varphi(\beta)+\log f_0(y)=\beta^TX^Ty-\varphi(\beta)+c\l_\beta'(y)=X^Ty-X^T\mu(\beta)
\]
then, MLE of \(\beta\), denoted by \(\hat\beta\) satisfies
\[
X^T(y-\mu(\hat\beta))=0
\]
Model: \(y_{ij}=\mu_i+\epsilon_{ij}\), \(\epsilon_{ij}\overset{iid}{\sim}N(0,\sigma^2)\)
for \(i=1,...,r\) \(\sum_{i=1}^r n_i=n\)
LSE, MLE for \(\mu_i\): \(\hat\mu_i=\bar y_{i.}\)
unbiaesd estimaor for \(\sigma^2\): MSE
Hyphysis: \(H_0: \mu_1=...=\mu_r\)
SS | degree of freedom | mean |
---|---|---|
\(SST=\sum_i\sum_j(y_{ij}-\bar y_{..})^2\) | \(df=n-1\) | |
\(S_e=\sum_i\sum_j(y_{ij}-\bar y_{i.})^2\) | \(df=n-r\) | \(MSE\) |
\(S_A=\sum_i\sum_j(\bar y_{i.}-\bar y_{..})^2\) | \(df=r-1\) | \(MSA\) |
\(SST=S_A+S_e\) |
Test statistic:
\[
F={MSA\over MSE}\sim F_{r-1, n-r}
\]
Reject \(H_0\), when \(F>F_{r-1,n-r}(\alpha)\)
Model (sample level)
\(y_{ijk}=\mu_{ij}+\epsilon_{ijk}\), \(\epsilon_{ijk}\overset{iid}{\sim}N(0,\sigma^2)\)
Cell mean: \(y_{ijk}=\mu+\alpha_i+\beta_i+r_{ij}+\epsilon_{ijk}\)
\(r_{ij}\ne0\)
\[
\sum_{ijk}(y_{ijk}-\bar y_{...})^2=\sum_{ijk}(y_{ijk}-\bar y_{ij.})^2+\sum_{ijk}(\bar y_{ij.}-\bar y_{...})^2\SST=S_e+S_{AB}\S_{AB}=SSA+SSB+SSAB\\]
\[ SSA=\sum_{ijk}(\bar y_{i..}-\bar y_{...})^2\SSB=\sum_{ijk}(\bar y_{.j.}-\bar y_{...})^2\SSAB=\sum_{ijk}(\bar y_{ij.}-\bar y_{i..}-\bar y_{.j.}+\bar y_{...})^2\\]
Revised: \(Y_{ijk}=\mu+\alpha_i+\beta_j+\epsilon_{ijk}\)
SS | Full | Revised |
---|---|---|
\(S_{AB}\) | \(df=ab-1\) | $ df=a+b-2$ |
\(SSA\) | \(df=a-1\) | \(df=a-1\) |
\(SSB\) | \(df=b-1\) | \(df=b-1\) |
\(SSAB\) | \(df=(a-1)(b-1)\) | |
\(S_e\) | \(df=ab(n-1)\) | \(df=abn-a-b+1\) |
\(SST\) | \(df=abn-1\) | \(df=abn-1\) |
Test for interaction:
\[
F={MSAB\over MSE}\sim F_{(a-1)(b-1), ab(n-1)}
\]
对于最后的双因子 ANOVA 再说明一点:上面给出了在有无交互作用下的方差分解及其自由度。对于交互作用/主效应的假设检验;或者均值/各均值的线性组合的 CI,他们的思路都是一样的。在这里只给出了对于交互作用的假设检验统计量;对于其他的各量来说,方法都是一样的:找出对于量的分布(如 A/B 的主效应为相应自由度的卡方分布,均值则为一定方差的正态分布),该分布中有为知参数\(\sigma^2\),再借助 \(s^2=MSE=S_e/df\) 将其消去,得到相应的 t 分布或 F 分布,再根据问题要求(假设检验或 CI)进行求解。唯一需要注意的是,要看清两因子之间是否有交互作用,这决定了 \(MSE\) 的自由度。
原文:https://www.cnblogs.com/easonshi/p/12158845.html