\(f:(G,\cdot)\rightarrow(H,\triangle), f(g_{1}\cdot g_{2})=f(g_{1})\triangle f(g_{2}))\)
f为单射 \(\rightarrow\)单同态
f为满射 \(\rightarrow\)满同态
f为双射 \(\rightarrow\)同构
单位元具有唯一性:
\(f\left(e_{1}\right)=f\left(e_{1}^{2}\right)=f\left(e_{1}\right) \Delta\)
\(f :G\rightarrow H\)
\((G,\cdot)\rightarrow (H,\triangle)\)
\(\frac{G}{Kerf}\cong Imf\)
\(\left\{Kerf=g|f(g)=e_{H}\right\} \quad and \quad Imf=\left\{f(g)|g \in G \right\}\)
首先这个定理很直观,如果商集比较熟悉的话,一眼就可以看出来这个定理其实,对于\(Kerf\)的话,对应值域的\(e\),商掉\(Kerf\)的话,剩下的其实就是\(Imf\)
证明的话需要证明映射的良序性,单射和满射
群第一同构定理:\(H\big/(H \cap K) \cong HK\big/K\)
群同构第二定理
\(G \big/ H \cong (G\big/K)\bigg/(H\big/K)\)
原文:https://www.cnblogs.com/zonghanli/p/12159487.html