首页 > 其他 > 详细

pytorch 单机多gpu运行

时间:2020-01-10 23:45:36      阅读:105      评论:0      收藏:0      [点我收藏+]

官方原理图

技术分享图片

前向传播过程:将数据按照batch维度分发到各个GPU上(平均分配),而后将模型拷贝到GPU,各GPU并行前向传播,将各个输出(o1、02、03、04)汇总到总的GPU。

后向传播过程:在总GPU上并行计算得到损失,并得到初始梯度;将各梯度分发到各GPU;并行计算梯度;汇总梯度,更新网络参数。

参考代码如下

import os
import torch
import torch.nn as nn
import Encoder
os.environ[CUDA_VISIBLE_DEVICES]=0,1,2# 这里的0 就是主gpu,  1、2的模型和数据由主gpu分发
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

encoder=Encoder()
encoder = encoder.to(device) # 这里将模型复制到gpu ,默认是cuda(‘0‘),即转到第一个GPU 2
decoder_optimizer = torch.optim.Adam(params=encoder.parameters(),lr=encoder_lr, betas = (0.8,0.999)) #定义优化器
criterion = nn.CrossEntropyLoss()
if torch.cuda.device_count() > 1:
    encoder = torch.nn.DataParallel(encoder)  # 前提是model已经在cuda上了

# 前向传播时数据也要放到GPU中,即复制到主gpu里
for batch_idx, (data, label) in train_data:
    data=data.to(device)
    label=label.to(device)
    prediction = encoder(data)
    # 这里的prediction 预测结果是由两个gpu合并过的,并行计算只存在在前向传播里
    # 前向传播每个gpu计算量为 batch_size/torch.cuda.device_count() ,等前向传播完了将结果合到主gpu
    
    loss = criterion(prediction, label)  # 计算loss
    optimizer.zero_grad()
    loss.backward()

pytorch 单机多gpu运行

原文:https://www.cnblogs.com/AntonioSu/p/12178478.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!