首页 > 其他 > 详细

Triangle

时间:2014-02-17 22:11:32      阅读:546      评论:0      收藏:0      [点我收藏+]

Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

For example, given the following triangle

[
     [2],
    [3,4],
   [6,5,7],
  [4,1,8,3]
]

 

The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).

Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.

 

Ref:http://www.cnblogs.com/feiling/p/3269609.html

[解题思路]

该题是经典的DP问题,状态可以定义成dp[node]表示从当前node到bottom的最小路径和,对于最下面一层,因为它们是最底层,故它们到bottom的最小路径和就是它们自身;再往上一层,如节点6,它到达bottom的最小路径和即为节点4与节点1之间的最小值加上节点6自身的值

由以上分析得出状态迁移方程:

dp[node] = value[node] + min(dp[child1], dp[child2])

 

另外本题要求时间复杂度为:O(n), n为三角形的行数

 

bubuko.com,布布扣
public class Solution {
    public int minimumTotal(ArrayList<ArrayList<Integer>> triangle) {
        if(triangle == null || triangle.size() == 0){
            return 0;
        }
        int row = triangle.size();
        int[] num = new int[row];
        for(int i = row-1; i>= 0; i--){
            int col = triangle.get(i).size();
            for(int j = 0; j< col; j++){
                if(i == row-1){
                    num[j] = triangle.get(i).get(j);
                    continue;
                }
                num[j] = Math.min(num[j] , num[j+1])+ triangle.get(i).get(j);
            }
        }
     return num[0];   
    }
}
bubuko.com,布布扣

Triangle

原文:http://www.cnblogs.com/RazerLu/p/3552577.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!