卷积神经网络具有三个重要特点:
local receptive fields通过卷积操作来实现,它使得CNN可以更高效地捕捉局部区域下的特征:
shared wights指的是一个卷积层只使用一组权重(卷积核)。即:CN通过把单个卷积核在整幅图像上进行滑动来完成一组卷积层的映射:
输出数据体在空间上的尺寸 \(W_2\times H_2\times D_2\) 可以通过输入数据体尺寸 \(W_1\times H_1\times D_1\),卷积层中神经元的感受野尺寸(F),步长(S),卷积核数量(K)和零填充的数量(P)计算输出出来:
一般说来,当步长S=1时,零填充的值是P=(F-1)/2,这样就能保证输入和输出数据体有相同的空间尺寸
LeNet5是一个经典的卷积神经网络,这里用pytorch对其进行实现:
import torch
import torchvision
import torchvision.transforms as transforms
# 准备数据
"""
torchvision.transforms.Compose(transforms)用于将多个transform组合起来使用,其参数是由transform构成的列表
class torchvision.transforms.Normalize(mean, std)用于将Tensor正则化:Normalized_image=(image-mean)/std
注意mean和std的维数要与数据的通道数一致
"""
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4,
shuffle=False, num_workers=2)
classes = ('plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
# 定义网络
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5) # https://pytorch.org/docs/stable/nn.html#conv2d
self.pool = nn.MaxPool2d(2, 2) # https://pytorch.org/docs/stable/nn.html#maxpool2d
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120) # https://pytorch.org/docs/stable/nn.html#linear
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
# 定义损失函数和优化方法
import torch.optim as optim
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
# 利用GPU训练模型
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)
net = net.to(device)
for epoch in range(2): # loop over the dataset multiple times
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# get the inputs; data is a list of [inputs, labels]
inputs, labels = data[0].to(device), data[1].to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# print statistics
running_loss += loss.item()
if i % 2000 == 1999: # print every 2000 mini-batches
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 2000))
running_loss = 0.0
print('Finished Training')
# 测试模型
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: %d %%' % (
100 * correct / total))
class_correct = list(0. for i in range(10))
class_total = list(0. for i in range(10))
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs, 1)
c = (predicted == labels).squeeze()
for i in range(4):
label = labels[i]
class_correct[label] += c[i].item()
class_total[label] += 1
for i in range(10):
print('Accuracy of %5s : %2d %%' % (
classes[i], 100 * class_correct[i] / class_total[i]))
参考:
原文:https://www.cnblogs.com/lokvahkoor/p/12206493.html