首页 > 其他 > 详细

第七周 第二部分

时间:2020-01-18 19:20:29      阅读:78      评论:0      收藏:0      [点我收藏+]

Kernels I

我将对支持向量机算法做一些改变 
以构造复杂的非线性分类器我们用"kernels(核函数)"来达到此目的

技术分享图片

 

 技术分享图片

 

 技术分享图片

 

 技术分享图片

 

 技术分享图片

 

 技术分享图片

 

 技术分享图片

 

 技术分享图片

 

 技术分享图片

 

 技术分享图片

 

 

如果你有大量的特征变量 如果 n 很大 而训练集的样本数 m 很小
特征变量 x 是一个 n+1 维向量你应该拟合 一个线性的判定边界 .不要拟合非常复杂的非线性函数 因为没有足够的数据

技术分享图片

 

 一个实现过程中的注意事项 如果你有大小很不一样 的特征变量在使用高斯核函数之前 对它们进行归一化是很重要的

技术分享图片

 

 多项式核函数几乎总是 或者通常执行的效果 比高斯核函数差一些 .所以用得没有那么多 但是你有可能会碰到 通常它只用在 

当 x 和 l 都是严格的非负数时 这样以保证这些 内积值永远不会是负数

 

技术分享图片

 

 技术分享图片

 

 技术分享图片

 

 

SVM 在一个区间内 是一个非常有效地学习复杂非线性函数的方法 
 

第七周 第二部分

原文:https://www.cnblogs.com/tingtin/p/12209792.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!