首页 > 其他 > 详细

自适应辛普森法

时间:2020-01-22 22:44:15      阅读:77      评论:0      收藏:0      [点我收藏+]

自适应辛普森法通过\(Simpson\)公式,用二次函数来拟合,实现时用二分递归来自动控制区间分割的大小,既保证精度,又保证速度

\(Simpson\)公式推导

\[\int_a^bf(x)dx\]
\[\approx\int_a^bAx^2+Bx+C\]
\[=\frac{A}{3}(b^3-a^3)+\frac{B}{2}(b^2-a^2)+C(b-a)\]
\[=\frac{(b-a)}{6}(2Ab^2+2Aab+2Aa^2+3Bb+3Ba+6C)\]
\[=\frac{(b-a)}{6}(Aa^2+Ba+C+Ab^2+Bb+C+4A(\frac{a+b}{2})^2+4B(\frac{a+b}{2})+4C)\]
\[=\frac{(b-a)}{6}(f(a)+f(b)+4f(\frac{a+b}{2}))\]

\(\displaystyle{\int_l^r\frac{cx+d}{ax+b}\mathrm{d}x}\)

\(code:\)

double f(double x)
{
    return (c*x+d)/(a*x+b);
}
double simpson(double l,double r)
{
    double mid=(l+r)/2;
    return (r-l)*(f(l)+f(r)+4*f(mid))/6;
}
double sol(double l,double r,double eps)
{
    double mid=(l+r)/2;
    double a=simpson(l,mid),b=simpson(mid,r),m=simpson(l,r);
    if(fabs(a+b-m)<=eps) return a+b+(a+b-m);
    return sol(l,mid,eps/2)+sol(mid,r,eps/2);
}

自适应辛普森法

原文:https://www.cnblogs.com/lhm-/p/12229789.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!