所谓的多元,通俗一点讲就是一个数据集中含有多个特征,一元的话就含有一个特征,因此公式变为
\(h_{\theta}(x)=\theta_{0}+\theta_{1} x_{1}+\theta_{2} x_{2}+\cdots+\theta_{n} x_{n}\)
\(\theta_{0}, \theta_{1}, \ldots, \theta_{n}\)
\(J\left(\theta_{0}, \theta_{1}, \ldots, \theta_{n}\right)=\frac{1}{2 m} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right)^{2}\)
Gradient descent:
Repeat { \(\rightarrow \theta_{j}:=\theta_{j}-\alpha \frac{\partial}{\partial \theta_{j}} J\left(\theta_{0}, \ldots, \theta_{n}\right)\)
(simultaneously update for every \(j=0, \ldots, n\) )
一般来讲梯度下降算法是适用于大样本的,大样本多大呢?10000+吧
以上线性回归的预测是连续值的情况下
房价
人口等预测
当然了具体的建模具体分析
补充代码:
原文:https://www.cnblogs.com/gaowenxingxing/p/12232396.html