首页 > 其他 > 详细

大数定律

时间:2020-01-25 18:24:43      阅读:79      评论:0      收藏:0      [点我收藏+]

定义:设\(X_{n}\)是一个随机变量序列,\(X\)为一个随机变量,如果对于任意的\(\varepsilon > 0\),有\(lim_{n \rightarrow \infty}P\{|X_n -X| \geq \varepsilon \}=0\)

称随机变量序列\({X_n}\)依概率收敛于随机变量X

以上的例子说明一般按分布收敛与依概率收敛是不等价的.而下面的定理则说明:当极限随机变量为常数时,按分布收敛与依概率收敛是等价的.

\(X_{n} \stackrel{P}{\longrightarrow} X \Rightarrow X_{n} \stackrel{L}{\longrightarrow} X\)
\(X_{n} \stackrel{P}{\longrightarrow} a \Leftrightarrow X_{n} \stackrel{L}{\longrightarrow} a\)

大数定律

原文:https://www.cnblogs.com/zonghanli/p/12233248.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!