关于微服务的一个形象表达:
X轴:运行多个负载均衡器之后的运行实例,是水平复制。比如讲单体系统多运行几个实例,做个集群加负载均衡的模式。
Y轴:将应用进一步分解为微服务(分库),是微服务的拆分模式,就是基于不同的业务进行拆分。
Z轴:大数据量时,将服务分区(分表),是数据分区,比如按照用户请求的地区进行数据分区,北京、上海、四川等多建几个集群。
举例:比如打车APP,一个集群撑不住时,分了多个集群,后来用户激增还是不够用。分析后发现打车APP上主要用户是乘客和车主,
就将打车应用拆成了三个乘客服务、车主服务、支付服务。三个服务的业务特点各不相同,独立维护,各自都可以再次按需扩展。
一.具体实践微服务:
要实际的应用微服务,需要解决一下四点问题:
(1)客户端如何访问这些服务
(2)每个服务之间如何通信
(3)如此多的服务,如何实现?
(4)服务挂了,如何解决?(备份方案,应急处理机制)
1、客户端如何访问这些服务
原来的Monolithic方式开发,所有的服务都是本地的,UI可以直接调用,现在按功能拆分成独立的服务,跑在独立的一般都在独立的虚拟机上的 Java进程了。客户端UI如何访问他的?
后台有N个服务,前台就需要记住管理N个服务,一个服务下线/更新/升级,前台就要重新部署,这明显不服务我们 拆分的理念,特别当前台是移动应用的时候,通常业务变化的节奏更快。
另外,N个小服务的调用也是一个不小的网络开销。还有一般微服务在系统内部,通常是无 状态的,用户登录信息和权限管理最好有一个统一的地方维护管理(OAuth)。
所以,一般在后台N个服务和UI之间一般会一个代理或者叫API Gateway,他的作用包括:
① 提供统一服务入口,让微服务对前台透明
② 聚合后台的服务,节省流量,提升性能
③ 提供安全,过滤,流控等API管理功能
其实这个API Gateway可以有很多广义的实现办法,可以是一个软硬一体的盒子,也可以是一个简单的MVC框架,甚至是一个Node.js的服务端。他们最重要的作 用是为前台(通常是
移动应用)提供后台服务的聚合,提供一个统一的服务出口,解除他们之间的耦合,不过API Gateway也有可能成为单点故障点或者性能的瓶颈。
用过Taobao Open Platform(淘宝开放平台)的就能很容易的体会,TAO就是这个API Gateway。
2、每个服务之间如何通信
所有的微服务都是独立的Java进程跑在独立的虚拟机上,所以服务间的通信就是IPC(inter process communication),已经有很多成熟的方案。现在基本最通用的有两种方式:
同步调用:
①REST(JAX-RS,Spring Boot)
②RPC(Thrift, Dubbo)
异步消息调用(Kafka, Notify, MetaQ)
同步和异步的区别:
一般同步调用比较简单,一致性强,但是容易出调用问题,性能体验上也会差些,特别是调用层次多的时候。RESTful和RPC的比较也是一个很有意 思的话题。
一般REST基于HTTP,更容易实现,更容易被接受,服务端实现技术也更灵活些,各个语言都能支持,同时能跨客户端,对客户端没有特殊的要求,只要封装了HTTP的
SDK就能调用,所以相对使用的广一些。RPC也有自己的优点,传输协议更高效,安全更可控,特别在一个公司内部,如果有统一个 的开发规范和统一的服务框架时,
他的开发效率优势更明显些。就看各自的技术积累实际条件,自己的选择了。
而异步消息的方式在分布式系统中有特别广泛的应用,他既能减低调用服务之间的耦合,又能成为调用之间的缓冲,确保消息积压不会冲垮被调用方,同时能保证调用方的
服务体验,继续干自己该干的活,不至于被后台性能拖慢。不过需要付出的代价是一致性的减弱,需要接受数据最终一致性;还有就是后台服务一般要 实现幂等性,因为消息
发送出于性能的考虑一般会有重复(保证消息的被收到且仅收到一次对性能是很大的考验);最后就是必须引入一个独立的broker,如果公司内部没有技术积累,
对broker分布式管理也是一个很大的挑战。
3、如此多的服务,如何实现?
在微服务架构中,一般每一个服务都是有多个拷贝,来做负载均衡。一个服务随时可能下线,也可能应对临时访问压力增加新的服务节点。服务之间如何相互感知?服务如何管理?
这就是服务发现的问题了。一般有两类做法,也各有优缺点。基本都是通过zookeeper等类似技术做服务注册信息的分布式管理。当服务上线时,服务提供者将自己的服务信息
注册到ZK(或类似框架),并通过心跳维持长链接,实时更新链接信息。服务调用者通过ZK寻址,根据可定制算法, 找到一个服务,还可以将服务信息缓存在本地以提高性能。
当服务下线时,ZK会发通知给服务客户端。
客户端做:优点是架构简单,扩展灵活,只对服务注册器依赖。缺点是客户端要维护所有调用服务的地址,有技术难度,一般大公司都有成熟的内部框架支持,比如Dubbo。
服务端做:优点是简单,所有服务对于前台调用方透明,一般在小公司在云服务上部署的应用采用的比较多。
4、服务挂了,如何解决
前面提到,Monolithic方式开发一个很大的风险是,把所有鸡蛋放在一个篮子里,一荣俱荣,一损俱损。而分布式最大的特性就是网络是不可靠的。通过微服务拆分能降低这个风险,
不过如果没有特别的保障,结局肯定是噩梦。所以当我们的系统是由一系列的服务调用链组成的时候,我们必须确保任一环节出问题都不至于影响整体链路。相应的手段有很多:
①重试机制
②限流
③熔断机制
④负载均衡
⑤降级(本地缓存)
这些方法基本都很明确通用,比如Netflix的Hystrix:https://github.com/Netflix/Hystrix
二.常见的设计模式和应用
有一个图非常好的总结微服务架构需要考虑的问题,包括:
1、API Gateway
2、服务间调用
3、服务发现
4、服务容错
5、服务部署
6、数据调用
6种常见的微服务架构设计模式:
1、聚合器微服务设计模式
这是一种最常见也最简单的设计模式:
聚合器调用多个服务实现应用程序所需的功能。它可以是一个简单的Web页面,将检索到的数据进行处理展示。它也可以是一个更高层次的组合微服务,对检索到的数据增加业务逻辑后进一步
发布成一个新的微服务,这符合DRY原则。另外,每个服务都有自己的缓存和数据库。如果聚合器是一个组合服务,那么它也有自己的缓存和数据库。聚合器可以沿X轴和Z轴独立扩展。
2、代理微服务设计模式
这是聚合模式的一个变种,如下图所示:
在这种情况下,客户端并不聚合数据,但会根据业务需求的差别调用不同的微服务。代理可以仅仅委派请求,也可以进行数据转换工作。
3、链式微服务设计模式
这种模式在接收到请求后会产生一个经过合并的响应,如下图所示:
在这种情况下,服务A接收到请求后会与服务B进行通信,类似地,服务B会同服务C进行通信。所有服务都使用同步消息传递。在整个链式调用完成之前,客户端会一直阻塞。
因此,服务调用链不宜过长,以免客户端长时间等待。
4、分支微服务设计模式
这种模式是聚合器模式的扩展,允许同时调用两个微服务链,如下图所示:
5、数据共享微服务设计模式
自治是微服务的设计原则之一,就是说微服务是全栈式服务。但在重构现有的“单体应用(monolithic application)”时,SQL数据库反规范化可能会导致数据重复和不一致。
因此,在单体应用到微服务架构的过渡阶段,可以使用这种设计模式,如下图所示:
在这种情况下,部分微服务可能会共享缓存和数据库存储。不过,这只有在两个服务之间存在强耦合关系时才可以。对于基于微服务的新建应用程序而言,这是一种反模式。
6、异步消息传递微服务设计模式
虽然REST设计模式非常流行,但它是同步的,会造成阻塞。因此部分基于微服务的架构可能会选择使用消息队列代替REST请求/响应,如下图所示:
原文:https://www.cnblogs.com/ZJOE80/p/12236632.html