题意:给定一些已经存在的等价性证明,要求全部等价,需要在多最少几次证明
思路:先求出强连通分量,然后进行缩点,在缩点后的图上统计入度和出度为0结点的最大值,就是需要加的边数,注意如果整个图已经是强连通,就直接是答案
代码:
#include <cstdio> #include <cstring> #include <vector> #include <stack> #include <algorithm> using namespace std; const int N = 20005; vector<int> g[N], scc[N]; int pre[N], lowlink[N], sccno[N], dfs_clock, scc_cnt; stack<int> S; void dfs_scc(int u) { pre[u] = lowlink[u] = ++dfs_clock; S.push(u); for (int i = 0; i < g[u].size(); i++) { int v = g[u][i]; if (!pre[v]) { dfs_scc(v); lowlink[u] = min(lowlink[u], lowlink[v]); } else if (!sccno[v]) lowlink[u] = min(lowlink[u], pre[v]); } if (lowlink[u] == pre[u]) { scc_cnt++; while (1) { int x = S.top(); S.pop(); sccno[x] = scc_cnt; if (x == u) break; } } } void find_scc(int n) { dfs_clock = scc_cnt = 0; memset(sccno, 0, sizeof(sccno)); memset(pre, 0, sizeof(pre)); for (int i = 0; i < n; i++) if (!pre[i]) dfs_scc(i); } int in[N], out[N]; int T, n, m; int main() { scanf("%d", &T); while (T--) { scanf("%d%d", &n, &m); for (int i = 0; i < n; i++) g[i].clear(); int u, v; for (int i = 0; i < m; i++) { scanf("%d%d", &u, &v); u--; v--; g[u].push_back(v); } find_scc(n); for (int i = 1; i <= scc_cnt; i++) in[i] = out[i] = 1; for (int u = 0; u < n; u++) for (int i = 0; i < g[u].size(); i++) { int v = g[u][i]; if (sccno[u] != sccno[v]) in[sccno[v]] = out[sccno[u]] = 0; } int a = 0, b = 0; for (int i = 1; i <= scc_cnt; i++) { if (in[i]) a++; if (out[i]) b++; } int ans = max(a, b); if (scc_cnt == 1) ans = 0; printf("%d\n", ans); } return 0; }
UVA 12167 - Proving Equivalences(强连通分量+缩点)
原文:http://blog.csdn.net/accelerator_/article/details/38931071