首页 > Web开发 > 详细

PP: Robust Anomaly Detection for Multivariate Time Series through Stochastic Recurrent Neural Network

时间:2020-01-30 09:18:21      阅读:213      评论:0      收藏:0      [点我收藏+]

PROBLEM:

anomaly detection

input: multivariate time series to RNN ------> capture the normal patterns -----> reconstruct input data by the representations ------> use the reconstruction probabilities to determine anomalies. 

INTRODUCTION: 

Anomaly detection in different fields (graph, log messages, time series); 说明不同信息载体(图,文本,时序数据)的方法有很大的差异,可能在某些方面又是共通的。

Multiple univariate time series from the same device (or more generally, an entity) forms a multivariate time series.

 

 

RELATED WORK: 

 

PRELIMINARIES:

 

 

 

 

 

 

SUPPLEMENTARY KNOWLEDGE:

1. what does temporal dependency mean?

 

PP: Robust Anomaly Detection for Multivariate Time Series through Stochastic Recurrent Neural Network

原文:https://www.cnblogs.com/dulun/p/12241938.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!