首页 > 其他 > 详细

数值积分——复合辛普森求积公式

时间:2020-01-30 17:23:02      阅读:130      评论:0      收藏:0      [点我收藏+]

  此段代码是基于辛普森公式的积分计算方法

  1.代码

%%复合辛普森求积公式
%%Y是数值(attribute=0)或具体表达式(attribute=1),interval是求积区间,n是精度(如果是数值,则为数值长度-1)
function CSQF = Compound_Simpson_quadrature_formula(Y,interval,n,attribute)
a = interval(1);b = interval(2);
h = (b-a)/n;lambda = 0.5;
for i = 1:n+1
    X(i) = a+h*(i-1);
end
if attribute == 0
    for i = 1:n
        r = rand(1);
        Y_ave(i) = r*lambda*Y(i)+(1-r*lambda)*Y(i+1);
    end
    sum1 = 0;
    sum2 = 0;
    for i = 1:n
        sum1 = sum1+Y_ave(i);
    end
    for i = 2:n
        sum2 = sum2+Y(i);
    end
    CSQF = vpa(h*(Y(1)+Y(n+1)+4*sum1+2*sum2)/6,8);
elseif attribute ==1
    F = subs(Y,X);
    for i = 1:n
        r = rand(1);
        F_ave(i) =  r*lambda*F(i)+(1-r*lambda)*F(i+1);
    end
    sum1 = 0;
    sum2 = 0;
    for i = 1:n
        sum1 = sum1+F_ave(i);
    end
    for i = 2:n
        sum2 = sum2+F(i);
    end
    CSQF = vpa(h*(F(1)+F(n+1)+4*sum1+2*sum2)/6,8);
end
end

  2.例子

syms x;
Y = exp(x)*sin(x)+log(x+1);
interval=[0 pi];
attribute = 1;
n = 1000;
Compound_Simpson_quadrature_formula(Y,interval,n,attribute)

vpa(int(Y,x,interval),8)

  3.结果

ans =
14.815334
ans =
14.81429

  通过结果看出,辛普森求积公式的精度并不是很高,同复合梯形公式一样,取决于求积精度和积分表达式复杂程度

数值积分——复合辛普森求积公式

原文:https://www.cnblogs.com/guliangt/p/12243064.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!