首页 > 其他 > 详细

数值积分——高斯型求积公式

时间:2020-01-30 18:44:54      阅读:186      评论:0      收藏:0      [点我收藏+]

  在下面的这段代码中,包含了高斯-勒让德、高斯-切比雪夫、以及拉盖尔和埃尔米特型求积公式,它们分别对应了不同的被积积分型

  1.代码

%%高斯型求积公式
%%Y是函数表达式,interval是求积区间,n是求积阶数
%%对于求一般形式的非反常积分,可用勒让德型,
%%对于求形如f(x)/sqrt(1-x^2)的非反常积分,可用第一类切比雪夫型,
%对于形如f(x)*sqrt(1-x^2)的非反常积分,可用第二类切比雪夫型,切比雪夫型积分应在[-1 1]上
%对于反常积分f(x)*exp(-x)或者f(x)*exp(-x^2),且区间为[0,+inf]或[-inf,+inf],可用拉盖尔或者埃尔米特型(注意Y是f(x))
function GQF = Gauss_Quadrature_formula(Y,interval,n,type)
x = sym(‘x‘);
global sum;
%%勒让德型 if strcmp(type,‘Legendre‘) == 1 a = interval(1);b = interval(2); s = (b-a)*x/2+(a+b)/2; F = subs(Y,x,s); X0 = solve([Orthogonal_polynomial(type,n+1)],[0])‘; for k = 1:n X(k,:) = X0.^(k-1); B(k) = int(x^(k-1),-1,1); end A = X\(B‘); F_value = subs(F,X0); sum = 0; for k = 1:n sum = sum+A(k)*F_value(k); end sum = (b-a)*sum/2; %%拉盖尔型 elseif strcmp(type,‘Laguerre‘) == 1 X0 = solve([Orthogonal_polynomial(type,n+1)],[0])‘; for i = 1:n X(i,:) = X0.^(i-1); b(i) = factorial(i-1); end A = X\b‘; F_value = subs(Y,X0); sum = 0; for i = 1:n sum = sum+A(i)*F_value(i); end %%埃尔米特型 elseif strcmp(type,‘Hermite‘) == 1 X0 = solve([Orthogonal_polynomial(type,n+1)],[0])‘; for k = 1:n X(k,:) = X0.^(k-1); if (ceil(k/2) == k/2) == 1 B(k) =0; else B(k) = gamma(k/2); end end A = X\B‘; F_value = subs(Y,X0); sum = 0; for k = 1:n sum = sum+A(k)*F_value(k); end %%切比雪夫型 elseif strcmp(type(1:9),‘Chebyshev‘) == 1 class = eval(type(10)); if class == 1 X0 = solve([Orthogonal_polynomial(type,n+1)],[0])‘; for k = 1:n X(k,:) = X0.^(k-1); if (ceil(k/2) == k/2) == 1 B(k) =0; else h = k-1; B(k) = pi*Double_factorial(h+1)/(Double_factorial(h)*(h+1)); end end A = X\B‘; F_value = subs(Y,X0); sum = 0; for k = 1:n sum = sum+A(k)*F_value(k); end elseif class == 2 X0 = solve([Orthogonal_polynomial(type,n+1)],[0])‘; for k = 1:n X(k,:) = X0.^(k-1); if (ceil(k/2) == k/2) == 1 B(k) =0; else h = k-1; B(k) = pi*Double_factorial(h+1)/(Double_factorial(h+2)*(h+1)); end end A = X\B‘; F_value = subs(Y,X0); sum = 0; for k = 1:n sum = sum+A(k)*F_value(k); end end end GQF = vpa(sum,max([2,2^min([n,3])])); %%组合数中规定n>=m function NC = Number_of_combinations(m,n) NC = factorial(n)/(factorial(m)*factorial(n-m)); function F = factorial(n) if n == 0 F = 1; else F = factorial(n-1)*n; end end end %%双阶乘 function DF = Double_factorial(n) if n == 0 DF = 1; elseif n == 1 DF = 1; elseif n == -1 DF = -1; elseif n > 1 DF = Double_factorial(n-2)*n; elseif n < -1 DF = Double_factorial(n+2)*n; end end %%阶乘函数 function F = factorial(n) if n == 0 F = 1; else F = factorial(n-1)*n; end end end

  

%%正交多项式
%此函数包括勒让德正交多项式(定义区间[-1,1]),切比雪夫正交多项式(两类,
%在这里,规定第一类切比雪夫多项式是以1/sqrt(1-x^2)作为权函数,第二类切比雪夫多项式以sqrt(1-x^2)作为权函数得到的)(定义区间[-1,1])
%拉盖尔正交多项式(定义区间[0 +inf]),埃尔米特正交多项式(定义区间[-inf +inf]),输入项数N应从1开始
%%n是多项式的项数,n>=0,type是类型,分为Legendre、Chebyshev1、Chebyshev2、Laguerre、Hermite以及幂函数{1,x,x^2,x^3,…}对应其正交多项式
function OP = Orthogonal_polynomial(type,N)
sym type;
if strcmp(type,‘Legendre‘) == 1
    L = Legendre(N);
    OP = simplify(L(N));
elseif strcmp(type,‘Hermite‘) == 1
    H = Hermite(N);
    OP = simplify(H(N));
elseif strcmp(type,‘Laguerre‘) == 1
    La = Laguerre(N);
    OP = simplify(La(N));
elseif strcmp(type,‘幂函数‘) == 1
    Po = Power_fun(N)
    OP = simplify(Po(N));
elseif strcmp(type(1:9),‘Chebyshev‘) == 1
    class = eval(type(10));
    Che = Chebyshve(N,class);
    OP = simplify(Che(N));
end
%%幂函数正交
    function Po = Power_fun(N)
        x = sym(‘x‘);
        for i = 1:N
            Power(i) = x^(i-1);
        end
        Po = Power;
    end
%%勒让德多项式
    function L = Legendre(N)
        x = sym(‘x‘);
        for i = 1:N
            Leg(i) = diff((x^2-1)^(i-1),i-1)/(factorial(i-1)*2^(i-1));
        end
        L = Leg;
    end
%%切比雪夫多项式
    function C = Chebyshve(n,class)
        x = sym(‘x‘);
        if class == 1
            T = string([1 x]);
            T = sym(T);
            if n <=2
                C = T(1:n);
            else
                for i = 2:n
                    T(i+1) = 2*x*T(i)-T(i-1);
                end
                C = T(1:n);
            end
        elseif class ==2
            U = string([1]);
            U = sym(U);
            U = [U 2*x];
            if n <=2
                C = U(1:n);
            else
                for i = 2:n
                    U(i+1) = 2*x*U(i)-U(i-1);
                end
                C = U(1:n);
            end
        end
    end
%%埃尔米特多项式
    function H = Hermite(N)
        x = sym(‘x‘);
        for i = 1:N
            He(i) = (-1)^N*exp(x^2)*diff(exp(-x^2),(i-1));
        end
        H = simplify(He);
    end
%%拉盖尔多项式
    function La = Laguerre(N)
        x = sym(‘x‘);
        for i = 1:N
            Lag(i) = exp(x)*diff(x^(i-1)*exp(-x),(i-1));
        end
        La = simplify(Lag);
    end
%%阶乘函数
    function F = factorial(n)
        if n == 0
            F = 1;
        else
            F = factorial(n-1)*n;
        end
    end
end

  2.例子

  (1)高斯-勒让德求积公式

syms x;
n = 5;

disp(‘高斯-勒让德求积公式‘);
Y1 = exp(x)*sin(x)+log(x+1);
interval1=[0 pi];
type1 = ‘Legendre‘;
disp(‘求积公式值:‘);
Gauss_Quadrature_formula(Y1,interval1,n,type1)
disp(‘真实值‘);
vpa(int(Y1,x,interval1),9)

  

高斯-勒让德求积公式
求积公式值:
ans =
14.814301
真实值
ans =
14.8142899

  (2)I型切比雪夫

syms x;
n = 5;

disp(‘高斯-切比雪夫I型‘);
Y2 = cos(x^4)*exp(-abs(x));
interval2 = [-1 1];
type2 = ‘Chebyshev1‘;
disp(‘I型切比雪夫‘);
Gauss_Quadrature_formula(Y2,interval2,n,type2)
disp(‘真实值‘);
vpa(int(Y2/sqrt(1-x^2),x,interval2),9)

  

高斯-切比雪夫I型
I型切比雪夫
ans =
1.6533496
真实值
ans =
1.58844833

  (3)II型切比雪夫

syms x;
n = 5;

disp(‘高斯-切比雪夫II型‘);
Y3 = cos(x^3);
interval3 = [-1 1];
type3 = ‘Chebyshev2‘;
disp(‘II型切比雪夫‘);
Gauss_Quadrature_formula(Y3,interval3,n,type3)
disp(‘真实值‘);
vpa(int(Y3*sqrt(1-x^2),x,interval3),9)

  

高斯-切比雪夫II型
II型切比雪夫
ans =
1.5113594
真实值
ans =
1.51150634

  (4)拉盖尔型

syms x;
n = 5;

Y4 = x*sin(x+cos(x));
interval4 = [0 inf];
type4 = ‘Laguerre‘;
disp(‘拉盖尔型‘);
Gauss_Quadrature_formula(Y4,interval4,n,type4)
disp(‘真实值‘);
vpa(int(Y4*exp(-x),x,interval4),9)

  

拉盖尔型
ans =
0.83601799
真实值
ans =
0.823632836

  (5)埃尔米特型

syms x;
n = 5;

Y5 = cos(x+sin(x)-1);
interval5 = [-inf inf];
type5 = ‘Hermite‘;
disp(‘埃尔米特型‘);
Gauss_Quadrature_formula(Y5,interval5,n,type5)
disp(‘真实值‘);
vpa(int(Y5*exp(-x^2),x,interval5),9)

  

埃尔米特型
ans =
0.40264915
真实值
ans =
0.395314636

  

数值积分——高斯型求积公式

原文:https://www.cnblogs.com/guliangt/p/12243184.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!