原文链接:https://blog.csdn.net/on_the_road344/article/details/45178243
对于正整数n,φ(n)是小于或等于n的正整数中,与n互质的数的数目;
欧拉函数就是用来求这个的。
公式: φ(x)=x(1-1/p(1))(1-1/p(2))(1-1/p(3))(1-1/p(4))…..(1-1/p(n)) 其中p(1),p(2)…p(n)为x 的所有质因数;x是正整数; φ(1)=1(唯一和1互质的数,且小于等于1)。注意:每种质因数只有一个。
有两种方法求,一种直接求,一种线性求。
1 //直接求解欧拉函数 2 int euler(int n){ //返回euler(n) 3 int res=n,a=n; 4 for(int i=2;i*i<=a;i++){ 5 if(a%i==0){ 6 res=res/i*(i-1);//先进行除法是为了防止中间数据的溢出 7 while(a%i==0) a/=i; 8 } 9 } 10 if(a>1) res=res/a*(a-1); 11 return res; 12 } 13 14 //筛选法打欧拉函数表 15 #define Max 1000001 16 int euler[Max]; 17 void Init(){ 18 euler[1]=1; 19 for(int i=2;i<Max;i++) 20 euler[i]=i; 21 for(int i=2;i<Max;i++) 22 if(euler[i]==i) 23 for(int j=i;j<Max;j+=i) 24 euler[j]=euler[j]/i*(i-1);//先进行除法是为了防止中间数据的溢出 25 }
原文:https://www.cnblogs.com/xiaobuxie/p/12244102.html