首页 > 其他 > 详细

Redis 实现排行榜

时间:2020-02-01 18:46:45      阅读:90      评论:0      收藏:0      [点我收藏+]

Controller 层

技术分享图片
@RestController
public class RankingController {

    @Autowired
    private RangingService rankingService;

    @RequestMapping("/addScore")
    public String addRank(String uid, Integer score) {
        rankingService.rankAdd(uid, score);
        return "success";
    }

    @RequestMapping("/increScore")
    public String increScore(String uid, Integer score) {
        rankingService.increSocre(uid, score);
        return "success";
    }

    @RequestMapping("/rank")
    public Map<String, Long> rank(String uid) {
        Map<String, Long> map = new HashMap<>();
        map.put(uid, rankingService.rankNum(uid));
        return map;
    }

    @RequestMapping("/score")
    public Long rankNum(String uid) {
        return rankingService.score(uid);
    }

    @RequestMapping("/scoreByRange")
    public Set<ZSetOperations.TypedTuple<Object>> scoreByRange(Integer start, Integer end) {
        return rankingService.rankWithScore(start,end);
    }

    @RequestMapping("/sale/increScore")
    public String increSaleScore(String uid, Integer score) {
        rankingService.increSaleSocre(uid, score);
        return "success";
    }

    @RequestMapping("/sale/userScore")
    public Map<String,Object> userScore(String uid,String name) {
        return rankingService.userRank(uid,name);
    }

    @RequestMapping("/sale/top")
    public List<Map<String,Object>> reverseZRankWithRank(long start,long end) {
        return rankingService.reverseZRankWithRank(start,end);
    }

    @RequestMapping("/sale/scoreByRange")
    public List<Map<String,Object>> saleScoreByRange(Integer start, Integer end) {
        return rankingService.saleRankWithScore(start,end);
    }

}
RankingController

Service 层

技术分享图片
@Service
public class RangingService implements InitializingBean {


    private static final String RANKGNAME = "user_score";

    private static final String SALESCORE = "sale_score_rank:";

    @Autowired
    private RedisService redisService;

    @Autowired
    private UserMapper userMapper;

    @Autowired
    private ScoreFlowMapper scoreFlowMapper;

    @Autowired
    private UserScoreMapper userScoreMapper;


    public void rankAdd(String uid, Integer score) {
        redisService.zAdd(RANKGNAME, uid, score);
    }

    public void increSocre(String uid, Integer score) {

        redisService.incrementScore(RANKGNAME, uid, score);
    }

    public Long rankNum(String uid) {
        return redisService.zRank(RANKGNAME, uid);
    }

    public Long score(String uid) {
        Long score = redisService.zSetScore(RANKGNAME, uid).longValue();
        return score;
    }

    public Set<ZSetOperations.TypedTuple<Object>> rankWithScore(Integer start, Integer end) {
        return redisService.zRankWithScore(RANKGNAME, start, end);
    }


    public void rankSaleAdd() {
        UserScoreExample example = new UserScoreExample();
        example.setOrderByClause("id desc");
        List<UserScore> userScores = userScoreMapper.selectByExample(example);
        userScores.forEach(userScore -> {
            String key = userScore.getUserId() + ":" + userScore.getName();
            redisService.zAdd(SALESCORE, key, userScore.getUserScore());
        });
    }


    /**
     * 添加用户积分
     *
     * @param uid
     * @param score
     */
    public void increSaleSocre(String uid, Integer score) {
        User user = userMapper.find(uid);
        if (user == null) {
            return;
        }
        int uidInt = Integer.parseInt(uid);
        long socreLong = Long.parseLong(score + "");
        String name = user.getUserName();
        String key = uid + ":" + name;
        scoreFlowMapper.insertSelective(new ScoreFlow(socreLong, uidInt, name));
        userScoreMapper.insertSelective(new UserScore(uidInt, socreLong, name));
        redisService.incrementScore(SALESCORE, key, score);
    }


    public Map<String, Object> userRank(String uid, String name) {
        Map<String, Object> retMap = new LinkedHashMap<>();
        String key = uid + ":" + name;
        Integer rank = redisService.zRank(SALESCORE, key).intValue();
        Long score = redisService.zSetScore(SALESCORE, key).longValue();
        retMap.put("userId", uid);
        retMap.put("score", score);
        retMap.put("rank", rank);
        return retMap;
    }


    public List<Map<String, Object>> reverseZRankWithRank(long start, long end) {
        Set<ZSetOperations.TypedTuple<Object>> setObj = redisService.reverseZRankWithRank(SALESCORE, start, end);
        List<Map<String, Object>> mapList = setObj.stream().map(objectTypedTuple -> {
            Map<String, Object> map = new LinkedHashMap<>();
            map.put("userId", objectTypedTuple.getValue().toString().split(":")[0]);
            map.put("userName", objectTypedTuple.getValue().toString().split(":")[1]);
            map.put("score", objectTypedTuple.getScore());
            return map;
        }).collect(Collectors.toList());
        return mapList;
    }

    public List<Map<String, Object>> saleRankWithScore(Integer start, Integer end) {
        Set<ZSetOperations.TypedTuple<Object>> setObj = redisService.reverseZRankWithScore(SALESCORE, start, end);
        List<Map<String, Object>> mapList = setObj.stream().map(objectTypedTuple -> {
            Map<String, Object> map = new LinkedHashMap<>();
            map.put("userId", objectTypedTuple.getValue().toString().split(":")[0]);
            map.put("userName", objectTypedTuple.getValue().toString().split(":")[1]);
            map.put("score", objectTypedTuple.getScore());
            return map;
        }).collect(Collectors.toList());
        return mapList;
    }

//    @Override
//    public void run(ApplicationArguments args) throws Exception {
//        System.out.println("======enter run bean=======");
//        Thread.sleep(100000);
//        this.rankSaleAdd();
//    }


    @Override
    public void afterPropertiesSet() throws Exception {
        System.out.println("======enter init bean=======");
        this.rankSaleAdd();
    }
}
RangingService 实现业务

 工具类

技术分享图片
@Service
public class RedisService {

    @Autowired
    private RedisTemplate redisTemplate;

    private static double size = Math.pow(2, 32);


    /**
     * 写入缓存
     *
     * @param key
     * @param offset   位 8Bit=1Byte
     * @return
     */
    public boolean setBit(String key, long offset, boolean isShow) {
        boolean result = false;
        try {
            ValueOperations<Serializable, Object> operations = redisTemplate.opsForValue();
            operations.setBit(key, offset, isShow);
            result = true;
        } catch (Exception e) {
            e.printStackTrace();
        }
        return result;
    }

    /**
     * 写入缓存
     *
     * @param key
     * @param offset
     * @return
     */
    public boolean getBit(String key, long offset) {
        boolean result = false;
        try {
            ValueOperations<Serializable, Object> operations = redisTemplate.opsForValue();
            result = operations.getBit(key, offset);
        } catch (Exception e) {
            e.printStackTrace();
        }
        return result;
    }


    /**
     * 写入缓存
     *
     * @param key
     * @param value
     * @return
     */
    public boolean set(final String key, Object value) {
        boolean result = false;
        try {
            ValueOperations<Serializable, Object> operations = redisTemplate.opsForValue();
            operations.set(key, value);
            result = true;
        } catch (Exception e) {
            e.printStackTrace();
        }
        return result;
    }

    /**
     * 写入缓存设置时效时间
     *
     * @param key
     * @param value
     * @return
     */
    public boolean set(final String key, Object value, Long expireTime) {
        boolean result = false;
        try {
            ValueOperations<Serializable, Object> operations = redisTemplate.opsForValue();
            operations.set(key, value);
            redisTemplate.expire(key, expireTime, TimeUnit.SECONDS);
            result = true;
        } catch (Exception e) {
            e.printStackTrace();
        }
        return result;
    }

    /**
     * 批量删除对应的value
     *
     * @param keys
     */
    public void remove(final String... keys) {
        for (String key : keys) {
            remove(key);
        }
    }


    /**
     * 删除对应的value
     *
     * @param key
     */
    public void remove(final String key) {
        if (exists(key)) {
            redisTemplate.delete(key);
        }
    }

    /**
     * 判断缓存中是否有对应的value
     *
     * @param key
     * @return
     */
    public boolean exists(final String key) {
        return redisTemplate.hasKey(key);
    }

    /**
     * 读取缓存
     *
     * @param key
     * @return
     */
    public Object get(final String key) {
        Object result = null;
        ValueOperations<Serializable, Object> operations = redisTemplate.opsForValue();
        result = operations.get(key);
        return result;
    }

    /**
     * 哈希 添加
     *
     * @param key
     * @param hashKey
     * @param value
     */
    public void hmSet(String key, Object hashKey, Object value) {
        HashOperations<String, Object, Object> hash = redisTemplate.opsForHash();
        hash.put(key, hashKey, value);
    }

    /**
     * 哈希获取数据
     *
     * @param key
     * @param hashKey
     * @return
     */
    public Object hmGet(String key, Object hashKey) {
        HashOperations<String, Object, Object> hash = redisTemplate.opsForHash();
        return hash.get(key, hashKey);
    }

    /**
     * 列表添加
     *
     * @param k
     * @param v
     */
    public void lPush(String k, Object v) {
        ListOperations<String, Object> list = redisTemplate.opsForList();
        list.rightPush(k, v);
    }

    /**
     * 列表获取
     *
     * @param k
     * @param l
     * @param l1
     * @return
     */
    public List<Object> lRange(String k, long l, long l1) {
        ListOperations<String, Object> list = redisTemplate.opsForList();
        return list.range(k, l, l1);
    }

    /**
     * 集合添加
     *
     * @param key
     * @param value
     */
    public void add(String key, Object value) {
        SetOperations<String, Object> set = redisTemplate.opsForSet();
        set.add(key, value);
    }

    /**
     * 集合获取
     *
     * @param key
     * @return
     */
    public Set<Object> setMembers(String key) {
        SetOperations<String, Object> set = redisTemplate.opsForSet();
        return set.members(key);
    }

    /**
     * 有序集合添加
     *
     * @param key
     * @param value
     * @param scoure
     */
    public void zAdd(String key, Object value, double scoure) {
        ZSetOperations<String, Object> zset = redisTemplate.opsForZSet();
        zset.add(key, value, scoure);
    }

    /**
     * 有序集合获取
     *
     * @param key
     * @param scoure
     * @param scoure1
     * @return
     */
    public Set<Object> rangeByScore(String key, double scoure, double scoure1) {
        ZSetOperations<String, Object> zset = redisTemplate.opsForZSet();
        redisTemplate.opsForValue();
        return zset.rangeByScore(key, scoure, scoure1);
    }


    //第一次加载的时候将数据加载到redis中
    public void saveDataToRedis(String name) {
        double index = Math.abs(name.hashCode() % size);
        long indexLong = new Double(index).longValue();
        boolean availableUsers = setBit("availableUsers", indexLong, true);
    }

    //第一次加载的时候将数据加载到redis中
    public boolean getDataToRedis(String name) {

        double index = Math.abs(name.hashCode() % size);
        long indexLong = new Double(index).longValue();
        return getBit("availableUsers", indexLong);
    }

    /**
     * 有序集合获取排名
     *
     * @param key 集合名称
     * @param value 值
     */
    public Long zRank(String key, Object value) {
        ZSetOperations<String, Object> zset = redisTemplate.opsForZSet();
        return zset.rank(key,value);
    }


    /**
     * 有序集合获取排名
     *
     * @param key
     */
    public Set<ZSetOperations.TypedTuple<Object>> zRankWithScore(String key, long start,long end) {
        ZSetOperations<String, Object> zset = redisTemplate.opsForZSet();
        Set<ZSetOperations.TypedTuple<Object>> ret = zset.rangeWithScores(key,start,end);
        return ret;
    }

    /**
     * 有序集合添加
     *
     * @param key
     * @param value
     */
    public Double zSetScore(String key, Object value) {
        ZSetOperations<String, Object> zset = redisTemplate.opsForZSet();
        return zset.score(key,value);
    }


    /**
     * 有序集合添加分数
     *
     * @param key
     * @param value
     * @param scoure
     */
    public void incrementScore(String key, Object value, double scoure) {
        ZSetOperations<String, Object> zset = redisTemplate.opsForZSet();
        zset.incrementScore(key, value, scoure);
    }


    /**
     * 有序集合获取排名
     *
     * @param key
     */
    public Set<ZSetOperations.TypedTuple<Object>> reverseZRankWithScore(String key, long start,long end) {
        ZSetOperations<String, Object> zset = redisTemplate.opsForZSet();
        Set<ZSetOperations.TypedTuple<Object>> ret = zset.reverseRangeByScoreWithScores(key,start,end);
        return ret;
    }

    /**
     * 有序集合获取排名
     *
     * @param key
     */
    public Set<ZSetOperations.TypedTuple<Object>> reverseZRankWithRank(String key, long start, long end) {
        ZSetOperations<String, Object> zset = redisTemplate.opsForZSet();
        Set<ZSetOperations.TypedTuple<Object>> ret = zset.reverseRangeWithScores(key, start, end);
        return ret;
    }
}
工具类

虽然 Redis 帮助我们快速存读数据,但这些数据还是得落到数据库中进行保存,数据库表设计过程中几个关键要点:

1、表设计过程中应该注意:数据类型

  1. 更小的通常更好,控制字节长度。
  2. 使用合适的数据类型。如 tinyint 只占8个位,char(1024) 与 varchar(1024) 的对比——char 用于类似定长数据存储比 varchar 节省空间,如:uuid(32),可以用 char(32)。
  3. 尽量避免NULL,建议使用 NOT NULL,DEFAULT ‘‘ 创建字段。NULL 的列会让索引统计和值比较都更复杂。可为 NULL 的列会占据更多的磁盘空间,在 Mysql 中也需要更多复杂的处理程序。

2、表设计过程中应该注意:索引

  1. 选择唯一性索引。唯一性索引的值是唯一的,可以更快速的通过该索引来确定某条记录,保证物理上面唯一。
  2. 为经常需要排序、分组和联合操作的字段建立索引。经常需要 ORDER BY、GROUP BY、DISTINCT 和 UNION 等操作的字段,排序操作会浪费很多时间。
  3. 常作为查询条件的字段建立索引。如果某个字段经常用来做查询条件,那么该字段的查询速度会影响整个表的查询速度 。
  4. 数据少的地方不必建立索引。

3、表使用过程中应该注意:sql 优化

  1. 能够用 BETWEEN 的就不要用 IN
  2. 能够用 DISTINCT 的就不用 GROUP BY
  3. 避免数据类型强转
  4. 学会采用 explain 查看执行计划(注意:扫描行数会影响CPU运行,占用大量内存)

有些缓存数据并不是用户访问触发的,而是在项目启动时就加载到缓存中的,Spring Boot 实现初始化加载配置(实现缓存预热),主要有两种方法:

  1. 采用实现 ApplicationRunner 接口。该方法仅在 SpringApplication.run(…) 完成之前调用
  2. 采用实现 InitializingBean 接口。InitializingBean 接口为 bean 提供了初始化方法的方式,它只包括 afterPropertiesSet() 方法。在 Spring 初始化 bean 的时候,如果 bean 实现了 InitializingBean 接口,在对象的所有属性被初始化后之后才会调用 afterPropertiesSet() 方法

两种方式的区别在于:实现 ApplicationRunner 不会影响项目启动,而实现 InitializingBean 则项目必须等待方法走完才会真正启动。

Redis 实现排行榜

原文:https://www.cnblogs.com/jwen1994/p/12248885.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!