原创转载请注明出处:https://www.cnblogs.com/agilestyle/p/12254786.html
The built-in Python None value is also treated as NA in object arrays
There are a few ways to filter out missing data. While you always have the option to do it by hand using pandas.isnull and boolean indexing, the dropna can be helpful. On a Series, it returns the Series with only the non-null data and index values.
Python for Data Analysis Second Edition
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.isnull.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.notnull.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.dropna.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.dropna.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.fillna.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.fillna.html
原文:https://www.cnblogs.com/agilestyle/p/12254786.html