题意:n个飞机,每个飞机有一个早到时间和一个晚到时间,问怎么安排飞机,使得飞机到的间隔的最小值最大
思路:二分答案,然后利用2-set去判断,如果两个飞机的两个时刻间隔比这个时刻小,那么就是表示不能同时满足这两个条件,就加一条xi^xj的边进去,然后利用2-SET判定一下
代码:
#include <cstdio> #include <cstring> #include <cstdlib> #include <vector> #include <algorithm> using namespace std; const int MAXNODE = 2005; struct TwoSet { int n; vector<int> g[MAXNODE * 2]; bool mark[MAXNODE * 2]; int S[MAXNODE * 2], sn; void init(int tot) { n = tot * 2; for (int i = 0; i < n; i += 2) { g[i].clear(); g[i^1].clear(); } memset(mark, false, sizeof(mark)); } void add_Edge(int u, int uval, int v, int vval) { u = u * 2 + uval; v = v * 2 + vval; g[u^1].push_back(v); g[v^1].push_back(u); } bool dfs(int u) { if (mark[u^1]) return false; if (mark[u]) return true; mark[u] = true; S[sn++] = u; for (int i = 0; i < g[u].size(); i++) { int v = g[u][i]; if (!dfs(v)) return false; } return true; } bool solve() { for (int i = 0; i < n; i += 2) { if (!mark[i] && !mark[i + 1]) { sn = 0; if (!dfs(i)){ for (int j = 0; j < sn; j++) mark[S[j]] = false; sn = 0; if (!dfs(i + 1)) return false; } } } return true; } } gao; const int N = 2005; int n, ti[N][2]; int L, R; bool judge(int len) { gao.init(n); for (int i = 0; i < n; i++) { for (int a = 0; a < 2; a++) { for (int j = i + 1; j < n; j++) { for (int b = 0; b < 2; b++) { if (abs(ti[i][a] - ti[j][b]) < len) gao.add_Edge(i, a^1, j, b^1); } } } } return gao.solve(); } int main() { while (~scanf("%d", &n)) { L = R = 0; for (int i = 0; i < n; i++) for (int j = 0; j < 2; j++) { scanf("%d", &ti[i][j]); R = max(R, ti[i][j]); } R++; while (L < R) { int mid = (L + R) / 2; if (judge(mid)) L = mid + 1; else R = mid; } printf("%d\n", L - 1); } return 0; }
UVA 1146 - Now or later(2-SET)
原文:http://blog.csdn.net/accelerator_/article/details/38944591