首页 > 其他 > 详细

【BZOJ4766】文艺计算姬

时间:2020-02-05 20:42:59      阅读:67      评论:0      收藏:0      [点我收藏+]

【BZOJ4766】文艺计算姬

Matrix-Tree定理证明不会,用prufer序列

考虑构造prufer序列的过程。最后一对点肯定一个在\(L\),一个在\(R\)

剩余的点,每删一个\(L\)就会把一个\(R\)加入到序列中,因此共有\(n-1\)\(R\)点,\(m-1\)\(L\)点在序列中

然后把这些点扔到序列里,答案是\(m^{n-1} \cdot n^{m-1}\)

一开始想多了

为什么不用考虑\(L\)点和\(R\)点的相对顺序?为什么不会连同一部的边?

因为根据prufer构造树时,每次都把标号最小的未出现点(即叶子)挂上去,而二分图要求每次边的两个端点不在同一部,所以要取另一端的一个点,所以如果选定一些purfer序列里的点,每次放的\(L/R\)是固定的

代码不用贴了。

【BZOJ4766】文艺计算姬

原文:https://www.cnblogs.com/RiverHamster/p/sol-bzoj4766.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!