首页 > 编程语言 > 详细

【Python数据分析】pandas时刻数据:Timestamp

时间:2020-02-08 16:57:08      阅读:56      评论:0      收藏:0      [点我收藏+]

所谓的时刻数据代表时间点,是pandas的数据类型,是将值与时间点相关联的最基本类型的时间序列数据。

1.Timestamp

Timestamp是将数据类型转化为pandas的Timestamp类型

import pandas as pd
import datetime

date1 = datetime.datetime(2019, 12, 31, 12, 1, 2) # 创建一个datetime.datetime
date2 = '2017-12-31' # 创建一个字符串

t1 = pd.Timestamp(date1)
t2 = pd.Timestamp(date2)

print(t1,type(t1))
print(t2,type(t2))

2.to_datetime

to_datetime也是将数据类转化为pandas的Timestamp类型,但是如果是多个时间,则会转化为pandas的DatetimeIndex

2.1 单个时间转化

import pandas as pd
from datetime import datetime

date1 = datetime(2019, 12, 31, 12, 1, 2) # 创建一个datetime.datetime
date2 = '2017-12-31' # 创建一个字符串

# pd.to_datetime():如果是单个时间数据,转换成pandas的时刻数据,数据类型为Timestamp
t1 = pd.to_datetime(date1)
t2 = pd.to_datetime(date2)

print(t1,type(t1))
print(t2,type(t2))

2.2 多个时间转化

import pandas as pd
from datetime import datetime

# 多个时间数据,将会转换为pandas的DatetimeIndex
list_date = ['2019-12-31','2020-01-01','2020-01-02']
t3 = pd.to_datetime(list_date)
print(t3,type(t3))

print('-' * 50) # 分割线
date1 = [datetime(2018,6,1),datetime(2018,7,1),datetime(2018,8,1),datetime(2018,9,1),datetime(2018,10,1)]
date2 = ['2019-2-1','2019-2-2','2019-2-3','2019-2-4','2019-2-5','2019-2-6']
print(date1)
print(date2)

print('-' * 50) # 分割线
t1 = pd.to_datetime(date1)
t2 = pd.to_datetime(date2)
print(t1)
print(t2)

print('-' * 50) # 分割线
date3 = ['2017-2-1','2017-2-2','2017-2-3','hello world!','2017-2-5','2017-2-6']
t3 = pd.to_datetime(date3, errors = 'ignore')
print(t3,type(t3))
# 当一组时间序列中夹杂其他格式数据,可用errors参数返回
# errors = 'ignore':不可解析时返回原始输入,这里就是直接生成一般数组

t4 = pd.to_datetime(date3, errors = 'coerce')
print(t4,type(t4))
# errors = 'coerce':不可扩展,缺失值返回NaT(Not a Time),结果认为DatetimeIndex

【Python数据分析】pandas时刻数据:Timestamp

原文:https://www.cnblogs.com/OliverQin/p/12283511.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!