首页 > 其他 > 详细

120. Triangle

时间:2020-02-09 22:29:40      阅读:75      评论:0      收藏:0      [点我收藏+]

Problem:

Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

For example, given the following triangle

[
     [2],
    [3,4],
   [6,5,7],
  [4,1,8,3]
]

The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).

Note:

Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.

思路

Solution (C++):

int minimumTotal(vector<vector<int>>& triangle) {
    int n = triangle.size();
    vector<int> min_path(triangle.back());
    
    for (int layer = n-2; layer >= 0; --layer) {
        for (int i = 0; i <= layer; i++) {
            min_path[i] = min(min_path[i], min_path[i+1]) + triangle[layer][i];
        }
    }
    return min_path[0];
}

性能

Runtime: 8 ms??Memory Usage: 9.8 MB

120. Triangle

原文:https://www.cnblogs.com/dysjtu1995/p/12289132.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!