首页 > 编程语言 > 详细

k-近邻算法

时间:2020-02-11 00:06:20      阅读:78      评论:0      收藏:0      [点我收藏+]

K-近邻分类算法

概述

  • knn采用测量不同特征值之间的距离方法进行分类

    工作原理

    存在一个样本训练集,含标签,已知样本集中每个数据与所属分类的对应关系,输入没有标签的新数据后,将新数据的每个特征与样本数据集中数据对应的特征进行比较,然后算法提取样本集中特征最相似(最邻近)的分类标签

    优缺点

  • 优点:思想简单,实现起来比较容易,在多分类问题上效果很好
    缺点:效率低下。如果有m个样本和n个特征,则算法复杂度为O(m*n)。当训练数据比较多的时候,可以想象速度有多感人。计算复杂度和空间复杂度都比较大
    而且结果不具有可解释性。

自己想一遍,写一遍吧,掌握才是王道

从文本中解析和导入数据

使用matplotlib创建扩散图

归一化数值

归一化处理的必要性

k-近邻算法

原文:https://www.cnblogs.com/gaowenxingxing/p/12293081.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!