首页 > 编程语言 > 详细

几种常见的查找算法

时间:2020-02-11 10:04:28      阅读:61      评论:0      收藏:0      [点我收藏+]

技术分享图片

一、顺序查找(基于无序链表,效率低下)

package search;

import edu.princeton.cs.algs4.Queue;
import edu.princeton.cs.algs4.StdIn;
import edu.princeton.cs.algs4.StdOut;

public class SequentialSearchST<Key, Value> {
    private int n;           // number of key-value pairs
    private Node first;      // the linked list of key-value pairs

    private class Node {
        private Key key;
        private Value val;
        private Node next;

        public Node(Key key, Value val, Node next)  {
            this.key  = key;
            this.val  = val;
            this.next = next;
        }
    }

    public SequentialSearchST() {
    }

    public int size() {
        return n;
    }

    public boolean isEmpty() {
        return size() == 0;
    }

    //判断是否包含key
    public boolean contains(Key key) {
        if (key == null) throw new IllegalArgumentException("argument to contains() is null");
        return get(key) != null;
    }

    //查找key的值
    public Value get(Key key) {
        if (key == null) throw new IllegalArgumentException("argument to get() is null");
        for (Node x = first; x != null; x = x.next) {
            if (key.equals(x.key))
                return x.val;
        }
        return null;
    }

    //增加键值对
    public void put(Key key, Value val) {
        if (key == null) throw new IllegalArgumentException("first argument to put() is null");
        if (val == null) {
            delete(key);
            return;
        }

        for (Node x = first; x != null; x = x.next) {
            if (key.equals(x.key)) {
                x.val = val;
                return;
            }
        }
        first = new Node(key, val, first);
        n++;
    }

    //删除
    public void delete(Key key) {
        if (key == null) throw new IllegalArgumentException("argument to delete() is null");
        first = delete(first, key);
    }

    // delete key in linked list beginning at Node x
    // warning: function call stack too large if table is large
    private Node delete(Node x, Key key) {
        if (x == null) return null;
        if (key.equals(x.key)) {
            n--;
            return x.next;
        }
        x.next = delete(x.next, key);
        return x;
    }

    public Iterable<Key> keys()  {
        Queue<Key> queue = new Queue<Key>();
        for (Node x = first; x != null; x = x.next)
            queue.enqueue(x.key);
        return queue;
    }

    public static void main(String[] args) {
        SequentialSearchST<String, Integer> st = new SequentialSearchST<String, Integer>();
        for (int i = 0; !StdIn.isEmpty(); i++) {
            String key = StdIn.readString();
            st.put(key, i);
        }
        for (String s : st.keys())
            StdOut.println(s + " " + st.get(s));
    }
}

 

二.有序数组中的二分查找

技术分享图片

package search;

import edu.princeton.cs.algs4.Queue;
import edu.princeton.cs.algs4.StdIn;
import edu.princeton.cs.algs4.StdOut;

import java.util.NoSuchElementException;

public class BinarySearchST<Key extends Comparable<Key>, Value> {
    private static final int INIT_CAPACITY = 2;
    private Key[] keys;
    private Value[] vals;
    private int n = 0;

    public BinarySearchST() {
        this(INIT_CAPACITY);
    }

    public BinarySearchST(int capacity) {
        keys = (Key[]) new Comparable[capacity];
        vals = (Value[]) new Object[capacity];
    }

    //数组扩容
    private void resize(int capacity) {
        assert capacity >= n;
        Key[]   tempk = (Key[])   new Comparable[capacity];
        Value[] tempv = (Value[]) new Object[capacity];
        for (int i = 0; i < n; i++) {
            tempk[i] = keys[i];
            tempv[i] = vals[i];
        }
        vals = tempv;
        keys = tempk;
    }

    public int size() {
        return n;
    }

    public boolean isEmpty() {
        return size() == 0;
    }


    //判断是否包含key
    public boolean contains(Key key) {
        if (key == null) throw new IllegalArgumentException("argument to contains() is null");
        return get(key) != null;
    }

    //查找key的值
    public Value get(Key key) {
        if (key == null) throw new IllegalArgumentException("argument to get() is null");
        if (isEmpty()) return null;
        int i = rank(key);
        if (i < n && keys[i].compareTo(key) == 0) return vals[i];
        return null;
    }

    //返回表中小于给定键的键的数量(二分查找)
    public int rank(Key key) {
        if (key == null) throw new IllegalArgumentException("argument to rank() is null");

        int lo = 0, hi = n-1;
        while (lo <= hi) {
            int mid = lo + (hi - lo) / 2;
            int cmp = key.compareTo(keys[mid]);
            if      (cmp < 0) hi = mid - 1;
            else if (cmp > 0) lo = mid + 1;
            else return mid;
        }
        return lo;
    }

    //插入键值
    public void put(Key key, Value val)  {
        if (key == null) throw new IllegalArgumentException("first argument to put() is null");

        if (val == null) {
            delete(key);
            return;
        }

        int i = rank(key);

        // key已经存在于表中
        if (i < n && keys[i].compareTo(key) == 0) {
            vals[i] = val;
            return;
        }

        // insert new key-value pair
        if (n == keys.length) resize(2*keys.length);

        for (int j = n; j > i; j--)  {
            keys[j] = keys[j-1];
            vals[j] = vals[j-1];
        }
        keys[i] = key;
        vals[i] = val;
        n++;

        assert check();
    }

    public void delete(Key key) {
        if (key == null) throw new IllegalArgumentException("argument to delete() is null");
        if (isEmpty()) return;

        // compute rank
        int i = rank(key);

        // key not in table
        if (i == n || keys[i].compareTo(key) != 0) {
            return;
        }

        for (int j = i; j < n-1; j++)  {
            keys[j] = keys[j+1];
            vals[j] = vals[j+1];
        }

        n--;
        keys[n] = null;  // to avoid loitering
        vals[n] = null;

        // resize if 1/4 full
        if (n > 0 && n == keys.length/4) resize(keys.length/2);

        assert check();
    }

    //删除最小键值对
    public void deleteMin() {
        if (isEmpty()) throw new NoSuchElementException("Symbol table underflow error");
        delete(min());
    }

    //删除最大键值对
    public void deleteMax() {
        if (isEmpty()) throw new NoSuchElementException("Symbol table underflow error");
        delete(max());
    }

    //最小值得键
    public Key min() {
        if (isEmpty()) throw new NoSuchElementException("called min() with empty symbol table");
        return keys[0];
    }

    //最大值得键
    public Key max() {
        if (isEmpty()) throw new NoSuchElementException("called max() with empty symbol table");
        return keys[n-1];
    }

    //查看索引k对应的key
    public Key select(int k) {
        if (k < 0 || k >= size()) {
            throw new IllegalArgumentException("called select() with invalid argument: " + k);
        }
        return keys[k];
    }

    //向下取整
    public Key floor(Key key) {
        if (key == null) throw new IllegalArgumentException("argument to floor() is null");
        int i = rank(key);
        if (i < n && key.compareTo(keys[i]) == 0) return keys[i];
        if (i == 0) return null;
        else return keys[i-1];
    }

    //向下取整
    public Key ceiling(Key key) {
        if (key == null) throw new IllegalArgumentException("argument to ceiling() is null");
        int i = rank(key);
        if (i == n) return null;
        else return keys[i];
    }

    public int size(Key lo, Key hi) {
        if (lo == null) throw new IllegalArgumentException("first argument to size() is null");
        if (hi == null) throw new IllegalArgumentException("second argument to size() is null");

        if (lo.compareTo(hi) > 0) return 0;
        if (contains(hi)) return rank(hi) - rank(lo) + 1;
        else              return rank(hi) - rank(lo);
    }

    public Iterable<Key> keys() {
        return keys(min(), max());
    }

    public Iterable<Key> keys(Key lo, Key hi) {
        if (lo == null) throw new IllegalArgumentException("first argument to keys() is null");
        if (hi == null) throw new IllegalArgumentException("second argument to keys() is null");

        Queue<Key> queue = new Queue<Key>();
        if (lo.compareTo(hi) > 0) return queue;
        for (int i = rank(lo); i < rank(hi); i++)
            queue.enqueue(keys[i]);
        if (contains(hi)) queue.enqueue(keys[rank(hi)]);
        return queue;
    }

    private boolean check() {
        return isSorted() && rankCheck();
    }

    private boolean isSorted() {
        for (int i = 1; i < size(); i++)
            if (keys[i].compareTo(keys[i-1]) < 0) return false;
        return true;
    }

    // check that rank(select(i)) = i
    private boolean rankCheck() {
        for (int i = 0; i < size(); i++)
            if (i != rank(select(i))) return false;
        for (int i = 0; i < size(); i++)
            if (keys[i].compareTo(select(rank(keys[i]))) != 0) return false;
        return true;
    }

    public static void main(String[] args) {
        BinarySearchST<String, Integer> st = new BinarySearchST<String, Integer>();
        for (int i = 0; !StdIn.isEmpty(); i++) {
            String key = StdIn.readString();
            st.put(key, i);
        }
        for (String s : st.keys())
            StdOut.println(s + " " + st.get(s));
    }
}

 

三.二叉查找树

package search;

import edu.princeton.cs.algs4.Queue;
import edu.princeton.cs.algs4.StdIn;
import edu.princeton.cs.algs4.StdOut;
import java.util.NoSuchElementException;

public class BST<Key extends Comparable<Key>, Value> {
    private Node root;             // root of BST

    private class Node {
        private Key key;           // sorted by key
        private Value val;         // associated data
        private Node left, right;  // left and right subtrees
        private int size;          // number of nodes in subtree

        public Node(Key key, Value val, int size) {
            this.key = key;
            this.val = val;
            this.size = size;
        }
    }

    public BST() {
    }

    public boolean isEmpty() {
        return size() == 0;
    }

    public int size() {
        return size(root);
    }

    // return number of key-value pairs in BST rooted at x
    private int size(Node x) {
        if (x == null) return 0;
        else return x.size;
    }

    //判断是否存在key
    public boolean contains(Key key) {
        if (key == null) throw new IllegalArgumentException("argument to contains() is null");
        return get(key) != null;
    }

    //得到key对应的值
    public Value get(Key key) {
        return get(root, key);
    }

    private Value get(Node x, Key key) {
        if (key == null) throw new IllegalArgumentException("calls get() with a null key");
        if (x == null) return null;
        int cmp = key.compareTo(x.key);
        if      (cmp < 0) return get(x.left, key);
        else if (cmp > 0) return get(x.right, key);
        else              return x.val;
    }

    //新增键值对
    public void put(Key key, Value val) {
        if (key == null) throw new IllegalArgumentException("calls put() with a null key");
        if (val == null) {
            delete(key);
            return;
        }
        root = put(root, key, val);
        assert check();
    }

    private Node put(Node x, Key key, Value val) {
        if (x == null) return new Node(key, val, 1);
        int cmp = key.compareTo(x.key);
        if      (cmp < 0) x.left  = put(x.left,  key, val);
        else if (cmp > 0) x.right = put(x.right, key, val);
        else              x.val   = val;
        x.size = 1 + size(x.left) + size(x.right);
        return x;
    }


    //删除最小值
    public void deleteMin() {
        if (isEmpty()) throw new NoSuchElementException("Symbol table underflow");
        root = deleteMin(root);
        assert check();
    }

    private Node deleteMin(Node x) {
        if (x.left == null) return x.right;
        x.left = deleteMin(x.left);
        x.size = size(x.left) + size(x.right) + 1;
        return x;
    }

    //删除最大值
    public void deleteMax() {
        if (isEmpty()) throw new NoSuchElementException("Symbol table underflow");
        root = deleteMax(root);
        assert check();
    }

    private Node deleteMax(Node x) {
        if (x.right == null) return x.left;
        x.right = deleteMax(x.right);
        x.size = size(x.left) + size(x.right) + 1;
        return x;
    }

    //删除操作
    public void delete(Key key) {
        if (key == null) throw new IllegalArgumentException("calls delete() with a null key");
        root = delete(root, key);
        assert check();
    }

    private Node delete(Node x, Key key) {
        if (x == null) return null;

        int cmp = key.compareTo(x.key);
        if      (cmp < 0) x.left  = delete(x.left,  key);
        else if (cmp > 0) x.right = delete(x.right, key);
        else {
            if (x.right == null) return x.left;
            if (x.left  == null) return x.right;
            Node t = x;
            x = min(t.right);
            x.right = deleteMin(t.right);
            x.left = t.left;
        }
        x.size = size(x.left) + size(x.right) + 1;
        return x;
    }

    public Key min() {
        if (isEmpty()) throw new NoSuchElementException("calls min() with empty symbol table");
        return min(root).key;
    }

    private Node min(Node x) {
        if (x.left == null) return x;
        else                return min(x.left);
    }

    public Key max() {
        if (isEmpty()) throw new NoSuchElementException("calls max() with empty symbol table");
        return max(root).key;
    }

    private Node max(Node x) {
        if (x.right == null) return x;
        else                 return max(x.right);
    }

    //向下取整
    public Key floor(Key key) {
        if (key == null) throw new IllegalArgumentException("argument to floor() is null");
        if (isEmpty()) throw new NoSuchElementException("calls floor() with empty symbol table");
        Node x = floor(root, key);
        if (x == null) throw new NoSuchElementException("argument to floor() is too small");
        else return x.key;
    }

    private Node floor(Node x, Key key) {
        if (x == null) return null;
        int cmp = key.compareTo(x.key);
        if (cmp == 0) return x;
        if (cmp <  0) return floor(x.left, key);
        Node t = floor(x.right, key);
        if (t != null) return t;
        else return x;
    }

    public Key floor2(Key key) {
        Key x = floor2(root, key, null);
        if (x == null) throw new NoSuchElementException("argument to floor() is too small");
        else return x;

    }

    private Key floor2(Node x, Key key, Key best) {
        if (x == null) return best;
        int cmp = key.compareTo(x.key);
        if      (cmp  < 0) return floor2(x.left, key, best);
        else if (cmp  > 0) return floor2(x.right, key, x.key);
        else               return x.key;
    }

    //向上取整
    public Key ceiling(Key key) {
        if (key == null) throw new IllegalArgumentException("argument to ceiling() is null");
        if (isEmpty()) throw new NoSuchElementException("calls ceiling() with empty symbol table");
        Node x = ceiling(root, key);
        if (x == null) throw new NoSuchElementException("argument to floor() is too large");
        else return x.key;
    }

    private Node ceiling(Node x, Key key) {
        if (x == null) return null;
        int cmp = key.compareTo(x.key);
        if (cmp == 0) return x;
        if (cmp < 0) {
            Node t = ceiling(x.left, key);
            if (t != null) return t;
            else return x;
        }
        return ceiling(x.right, key);
    }

    public Key select(int k) {
        if (k < 0 || k >= size()) {
            throw new IllegalArgumentException("argument to select() is invalid: " + k);
        }
        Node x = select(root, k);
        return x.key;
    }

    // Return key of rank k.
    private Node select(Node x, int k) {
        if (x == null) return null;
        int t = size(x.left);
        if      (t > k) return select(x.left,  k);
        else if (t < k) return select(x.right, k-t-1);
        else            return x;
    }

    //返回小于key的数量
    public int rank(Key key) {
        if (key == null) throw new IllegalArgumentException("argument to rank() is null");
        return rank(key, root);
    }

    private int rank(Key key, Node x) {
        if (x == null) return 0;
        int cmp = key.compareTo(x.key);
        if      (cmp < 0) return rank(key, x.left);
        else if (cmp > 0) return 1 + size(x.left) + rank(key, x.right);
        else              return size(x.left);
    }

    public Iterable<Key> keys() {
        if (isEmpty()) return new Queue<Key>();
        return keys(min(), max());
    }

    public Iterable<Key> keys(Key lo, Key hi) {
        if (lo == null) throw new IllegalArgumentException("first argument to keys() is null");
        if (hi == null) throw new IllegalArgumentException("second argument to keys() is null");

        Queue<Key> queue = new Queue<Key>();
        keys(root, queue, lo, hi);
        return queue;
    }

    private void keys(Node x, Queue<Key> queue, Key lo, Key hi) {
        if (x == null) return;
        int cmplo = lo.compareTo(x.key);
        int cmphi = hi.compareTo(x.key);
        if (cmplo < 0) keys(x.left, queue, lo, hi);
        if (cmplo <= 0 && cmphi >= 0) queue.enqueue(x.key);
        if (cmphi > 0) keys(x.right, queue, lo, hi);
    }

    public int size(Key lo, Key hi) {
        if (lo == null) throw new IllegalArgumentException("first argument to size() is null");
        if (hi == null) throw new IllegalArgumentException("second argument to size() is null");

        if (lo.compareTo(hi) > 0) return 0;
        if (contains(hi)) return rank(hi) - rank(lo) + 1;
        else              return rank(hi) - rank(lo);
    }

    //返回树的高度
    public int height() {
        return height(root);
    }
    private int height(Node x) {
        if (x == null) return -1;
        return 1 + Math.max(height(x.left), height(x.right));
    }

    public Iterable<Key> levelOrder() {
        Queue<Key> keys = new Queue<Key>();
        Queue<Node> queue = new Queue<Node>();
        queue.enqueue(root);
        while (!queue.isEmpty()) {
            Node x = queue.dequeue();
            if (x == null) continue;
            keys.enqueue(x.key);
            queue.enqueue(x.left);
            queue.enqueue(x.right);
        }
        return keys;
    }

    private boolean check() {
        if (!isBST())            StdOut.println("Not in symmetric order");
        if (!isSizeConsistent()) StdOut.println("Subtree counts not consistent");
        if (!isRankConsistent()) StdOut.println("Ranks not consistent");
        return isBST() && isSizeConsistent() && isRankConsistent();
    }

    // does this binary tree satisfy symmetric order?
    // Note: this test also ensures that data structure is a binary tree since order is strict
    private boolean isBST() {
        return isBST(root, null, null);
    }

    // is the tree rooted at x a BST with all keys strictly between min and max
    // (if min or max is null, treat as empty constraint)
    // Credit: Bob Dondero‘s elegant solution
    private boolean isBST(Node x, Key min, Key max) {
        if (x == null) return true;
        if (min != null && x.key.compareTo(min) <= 0) return false;
        if (max != null && x.key.compareTo(max) >= 0) return false;
        return isBST(x.left, min, x.key) && isBST(x.right, x.key, max);
    }

    // are the size fields correct?
    private boolean isSizeConsistent() { return isSizeConsistent(root); }
    private boolean isSizeConsistent(Node x) {
        if (x == null) return true;
        if (x.size != size(x.left) + size(x.right) + 1) return false;
        return isSizeConsistent(x.left) && isSizeConsistent(x.right);
    }

    // check that ranks are consistent
    private boolean isRankConsistent() {
        for (int i = 0; i < size(); i++)
            if (i != rank(select(i))) return false;
        for (Key key : keys())
            if (key.compareTo(select(rank(key))) != 0) return false;
        return true;
    }


    public static void main(String[] args) {
        BST<String, Integer> st = new BST<String, Integer>();
        for (int i = 0; !StdIn.isEmpty(); i++) {
            String key = StdIn.readString();
            st.put(key, i);
        }

        for (String s : st.levelOrder())
            StdOut.println(s + " " + st.get(s));

        StdOut.println();

        for (String s : st.keys())
            StdOut.println(s + " " + st.get(s));
    }
}

 

四.红黑树

package sort;

import edu.princeton.cs.algs4.Queue;
import edu.princeton.cs.algs4.StdIn;
import edu.princeton.cs.algs4.StdOut;

import java.util.NoSuchElementException;

public class RedBlackBST<Key extends Comparable<Key>, Value> {

    private static final boolean RED   = true;
    private static final boolean BLACK = false;

    private Node root;     // root of the BST

    private class Node {
        private Key key;           // key
        private Value val;         // associated data
        private Node left, right;  // links to left and right subtrees
        private boolean color;     // color of parent link
        private int size;          // subtree count

        public Node(Key key, Value val, boolean color, int size) {
            this.key = key;
            this.val = val;
            this.color = color;
            this.size = size;
        }
    }

    public RedBlackBST() {
    }

    /***************************************************************************
     *  Node helper methods.
     ***************************************************************************/
    // is node x red; false if x is null ?
    private boolean isRed(Node x) {
        if (x == null) return false;
        return x.color == RED;
    }

    private int size(Node x) {
        if (x == null) return 0;
        return x.size;
    }


    /**
     * Returns the number of key-value pairs in this symbol table.
     * @return the number of key-value pairs in this symbol table
     */
    public int size() {
        return size(root);
    }

    public boolean isEmpty() {
        return root == null;
    }


    /***************************************************************************
     *  Standard BST search.
     ***************************************************************************/

    /**
     * Returns the value associated with the given key.
     * @param key the key
     * @return the value associated with the given key if the key is in the symbol table
     *     and {@code null} if the key is not in the symbol table
     * @throws IllegalArgumentException if {@code key} is {@code null}
     */
    public Value get(Key key) {
        if (key == null) throw new IllegalArgumentException("argument to get() is null");
        return get(root, key);
    }

    // value associated with the given key in subtree rooted at x; null if no such key
    private Value get(Node x, Key key) {
        while (x != null) {
            int cmp = key.compareTo(x.key);
            if      (cmp < 0) x = x.left;
            else if (cmp > 0) x = x.right;
            else              return x.val;
        }
        return null;
    }

    /**
     * Does this symbol table contain the given key?
     * @param key the key
     * @return {@code true} if this symbol table contains {@code key} and
     *     {@code false} otherwise
     * @throws IllegalArgumentException if {@code key} is {@code null}
     */
    public boolean contains(Key key) {
        return get(key) != null;
    }

    /***************************************************************************
     *  Red-black tree insertion.
     ***************************************************************************/

    /**
     * Inserts the specified key-value pair into the symbol table, overwriting the old
     * value with the new value if the symbol table already contains the specified key.
     * Deletes the specified key (and its associated value) from this symbol table
     * if the specified value is {@code null}.
     *
     * @param key the key
     * @param val the value
     * @throws IllegalArgumentException if {@code key} is {@code null}
     */
    public void put(Key key, Value val) {
        if (key == null) throw new IllegalArgumentException("first argument to put() is null");
        if (val == null) {
            delete(key);
            return;
        }

        root = put(root, key, val);
        root.color = BLACK;
        // assert check();
    }

    // insert the key-value pair in the subtree rooted at h
    private Node put(Node h, Key key, Value val) {
        if (h == null) return new Node(key, val, RED, 1);

        int cmp = key.compareTo(h.key);
        if      (cmp < 0) h.left  = put(h.left,  key, val);
        else if (cmp > 0) h.right = put(h.right, key, val);
        else              h.val   = val;

        // fix-up any right-leaning links
        if (isRed(h.right) && !isRed(h.left))      h = rotateLeft(h);
        if (isRed(h.left)  &&  isRed(h.left.left)) h = rotateRight(h);
        if (isRed(h.left)  &&  isRed(h.right))     flipColors(h);
        h.size = size(h.left) + size(h.right) + 1;

        return h;
    }

    /***************************************************************************
     *  Red-black tree deletion.
     ***************************************************************************/

    /**
     * Removes the smallest key and associated value from the symbol table.
     * @throws NoSuchElementException if the symbol table is empty
     */
    public void deleteMin() {
        if (isEmpty()) throw new NoSuchElementException("BST underflow");

        // if both children of root are black, set root to red
        if (!isRed(root.left) && !isRed(root.right))
            root.color = RED;

        root = deleteMin(root);
        if (!isEmpty()) root.color = BLACK;
        // assert check();
    }

    // delete the key-value pair with the minimum key rooted at h
    private Node deleteMin(Node h) {
        if (h.left == null)
            return null;

        if (!isRed(h.left) && !isRed(h.left.left))
            h = moveRedLeft(h);

        h.left = deleteMin(h.left);
        return balance(h);
    }


    /**
     * Removes the largest key and associated value from the symbol table.
     * @throws NoSuchElementException if the symbol table is empty
     */
    public void deleteMax() {
        if (isEmpty()) throw new NoSuchElementException("BST underflow");

        // if both children of root are black, set root to red
        if (!isRed(root.left) && !isRed(root.right))
            root.color = RED;

        root = deleteMax(root);
        if (!isEmpty()) root.color = BLACK;
        // assert check();
    }

    // delete the key-value pair with the maximum key rooted at h
    private Node deleteMax(Node h) {
        if (isRed(h.left))
            h = rotateRight(h);

        if (h.right == null)
            return null;

        if (!isRed(h.right) && !isRed(h.right.left))
            h = moveRedRight(h);

        h.right = deleteMax(h.right);

        return balance(h);
    }

    /**
     * Removes the specified key and its associated value from this symbol table
     * (if the key is in this symbol table).
     *
     * @param  key the key
     * @throws IllegalArgumentException if {@code key} is {@code null}
     */
    public void delete(Key key) {
        if (key == null) throw new IllegalArgumentException("argument to delete() is null");
        if (!contains(key)) return;

        // if both children of root are black, set root to red
        if (!isRed(root.left) && !isRed(root.right))
            root.color = RED;

        root = delete(root, key);
        if (!isEmpty()) root.color = BLACK;
        // assert check();
    }

    // delete the key-value pair with the given key rooted at h
    private Node delete(Node h, Key key) {
        // assert get(h, key) != null;

        if (key.compareTo(h.key) < 0)  {
            if (!isRed(h.left) && !isRed(h.left.left))
                h = moveRedLeft(h);
            h.left = delete(h.left, key);
        }
        else {
            if (isRed(h.left))
                h = rotateRight(h);
            if (key.compareTo(h.key) == 0 && (h.right == null))
                return null;
            if (!isRed(h.right) && !isRed(h.right.left))
                h = moveRedRight(h);
            if (key.compareTo(h.key) == 0) {
                Node x = min(h.right);
                h.key = x.key;
                h.val = x.val;
                // h.val = get(h.right, min(h.right).key);
                // h.key = min(h.right).key;
                h.right = deleteMin(h.right);
            }
            else h.right = delete(h.right, key);
        }
        return balance(h);
    }

    /***************************************************************************
     *  Red-black tree helper functions.
     ***************************************************************************/

    // make a left-leaning link lean to the right
    private Node rotateRight(Node h) {
        // assert (h != null) && isRed(h.left);
        Node x = h.left;
        h.left = x.right;
        x.right = h;
        x.color = x.right.color;
        x.right.color = RED;
        x.size = h.size;
        h.size = size(h.left) + size(h.right) + 1;
        return x;
    }

    // make a right-leaning link lean to the left
    private Node rotateLeft(Node h) {
        // assert (h != null) && isRed(h.right);
        Node x = h.right;
        h.right = x.left;
        x.left = h;
        x.color = x.left.color;
        x.left.color = RED;
        x.size = h.size;
        h.size = size(h.left) + size(h.right) + 1;
        return x;
    }

    // flip the colors of a node and its two children
    private void flipColors(Node h) {
        // h must have opposite color of its two children
        // assert (h != null) && (h.left != null) && (h.right != null);
        // assert (!isRed(h) &&  isRed(h.left) &&  isRed(h.right))
        //    || (isRed(h)  && !isRed(h.left) && !isRed(h.right));
        h.color = !h.color;
        h.left.color = !h.left.color;
        h.right.color = !h.right.color;
    }

    // Assuming that h is red and both h.left and h.left.left
    // are black, make h.left or one of its children red.
    private Node moveRedLeft(Node h) {
        // assert (h != null);
        // assert isRed(h) && !isRed(h.left) && !isRed(h.left.left);

        flipColors(h);
        if (isRed(h.right.left)) {
            h.right = rotateRight(h.right);
            h = rotateLeft(h);
            flipColors(h);
        }
        return h;
    }

    // Assuming that h is red and both h.right and h.right.left
    // are black, make h.right or one of its children red.
    private Node moveRedRight(Node h) {
        // assert (h != null);
        // assert isRed(h) && !isRed(h.right) && !isRed(h.right.left);
        flipColors(h);
        if (isRed(h.left.left)) {
            h = rotateRight(h);
            flipColors(h);
        }
        return h;
    }

    // restore red-black tree invariant
    private Node balance(Node h) {
        // assert (h != null);

        if (isRed(h.right))                      h = rotateLeft(h);
        if (isRed(h.left) && isRed(h.left.left)) h = rotateRight(h);
        if (isRed(h.left) && isRed(h.right))     flipColors(h);

        h.size = size(h.left) + size(h.right) + 1;
        return h;
    }


    /***************************************************************************
     *  Utility functions.
     ***************************************************************************/

    /**
     * Returns the height of the BST (for debugging).
     * @return the height of the BST (a 1-node tree has height 0)
     */
    public int height() {
        return height(root);
    }
    private int height(Node x) {
        if (x == null) return -1;
        return 1 + Math.max(height(x.left), height(x.right));
    }

    /***************************************************************************
     *  Ordered symbol table methods.
     ***************************************************************************/

    /**
     * Returns the smallest key in the symbol table.
     * @return the smallest key in the symbol table
     * @throws NoSuchElementException if the symbol table is empty
     */
    public Key min() {
        if (isEmpty()) throw new NoSuchElementException("calls min() with empty symbol table");
        return min(root).key;
    }

    // the smallest key in subtree rooted at x; null if no such key
    private Node min(Node x) {
        // assert x != null;
        if (x.left == null) return x;
        else                return min(x.left);
    }

    /**
     * Returns the largest key in the symbol table.
     * @return the largest key in the symbol table
     * @throws NoSuchElementException if the symbol table is empty
     */
    public Key max() {
        if (isEmpty()) throw new NoSuchElementException("calls max() with empty symbol table");
        return max(root).key;
    }

    // the largest key in the subtree rooted at x; null if no such key
    private Node max(Node x) {
        // assert x != null;
        if (x.right == null) return x;
        else                 return max(x.right);
    }


    /**
     * Returns the largest key in the symbol table less than or equal to {@code key}.
     * @param key the key
     * @return the largest key in the symbol table less than or equal to {@code key}
     * @throws NoSuchElementException if there is no such key
     * @throws IllegalArgumentException if {@code key} is {@code null}
     */
    public Key floor(Key key) {
        if (key == null) throw new IllegalArgumentException("argument to floor() is null");
        if (isEmpty()) throw new NoSuchElementException("calls floor() with empty symbol table");
        Node x = floor(root, key);
        if (x == null) throw new NoSuchElementException("argument to floor() is too small");
        else           return x.key;
    }

    // the largest key in the subtree rooted at x less than or equal to the given key
    private Node floor(Node x, Key key) {
        if (x == null) return null;
        int cmp = key.compareTo(x.key);
        if (cmp == 0) return x;
        if (cmp < 0)  return floor(x.left, key);
        Node t = floor(x.right, key);
        if (t != null) return t;
        else           return x;
    }

    /**
     * Returns the smallest key in the symbol table greater than or equal to {@code key}.
     * @param key the key
     * @return the smallest key in the symbol table greater than or equal to {@code key}
     * @throws NoSuchElementException if there is no such key
     * @throws IllegalArgumentException if {@code key} is {@code null}
     */
    public Key ceiling(Key key) {
        if (key == null) throw new IllegalArgumentException("argument to ceiling() is null");
        if (isEmpty()) throw new NoSuchElementException("calls ceiling() with empty symbol table");
        Node x = ceiling(root, key);
        if (x == null) throw new NoSuchElementException("argument to ceiling() is too small");
        else           return x.key;
    }

    // the smallest key in the subtree rooted at x greater than or equal to the given key
    private Node ceiling(Node x, Key key) {
        if (x == null) return null;
        int cmp = key.compareTo(x.key);
        if (cmp == 0) return x;
        if (cmp > 0)  return ceiling(x.right, key);
        Node t = ceiling(x.left, key);
        if (t != null) return t;
        else           return x;
    }

    /**
     * Return the key in the symbol table whose rank is {@code k}.
     * This is the (k+1)st smallest key in the symbol table.
     *
     * @param  k the order statistic
     * @return the key in the symbol table of rank {@code k}
     * @throws IllegalArgumentException unless {@code k} is between 0 and
     *        <em>n</em>–1
     */
    public Key select(int k) {
        if (k < 0 || k >= size()) {
            throw new IllegalArgumentException("argument to select() is invalid: " + k);
        }
        Node x = select(root, k);
        return x.key;
    }

    // the key of rank k in the subtree rooted at x
    private Node select(Node x, int k) {
        // assert x != null;
        // assert k >= 0 && k < size(x);
        int t = size(x.left);
        if      (t > k) return select(x.left,  k);
        else if (t < k) return select(x.right, k-t-1);
        else            return x;
    }

    /**
     * Return the number of keys in the symbol table strictly less than {@code key}.
     * @param key the key
     * @return the number of keys in the symbol table strictly less than {@code key}
     * @throws IllegalArgumentException if {@code key} is {@code null}
     */
    public int rank(Key key) {
        if (key == null) throw new IllegalArgumentException("argument to rank() is null");
        return rank(key, root);
    }

    // number of keys less than key in the subtree rooted at x
    private int rank(Key key, Node x) {
        if (x == null) return 0;
        int cmp = key.compareTo(x.key);
        if      (cmp < 0) return rank(key, x.left);
        else if (cmp > 0) return 1 + size(x.left) + rank(key, x.right);
        else              return size(x.left);
    }

    /***************************************************************************
     *  Range count and range search.
     ***************************************************************************/

    /**
     * Returns all keys in the symbol table as an {@code Iterable}.
     * To iterate over all of the keys in the symbol table named {@code st},
     * use the foreach notation: {@code for (Key key : st.keys())}.
     * @return all keys in the symbol table as an {@code Iterable}
     */
    public Iterable<Key> keys() {
        if (isEmpty()) return new Queue<Key>();
        return keys(min(), max());
    }

    /**
     * Returns all keys in the symbol table in the given range,
     * as an {@code Iterable}.
     *
     * @param  lo minimum endpoint
     * @param  hi maximum endpoint
     * @return all keys in the symbol table between {@code lo}
     *    (inclusive) and {@code hi} (inclusive) as an {@code Iterable}
     * @throws IllegalArgumentException if either {@code lo} or {@code hi}
     *    is {@code null}
     */
    public Iterable<Key> keys(Key lo, Key hi) {
        if (lo == null) throw new IllegalArgumentException("first argument to keys() is null");
        if (hi == null) throw new IllegalArgumentException("second argument to keys() is null");

        Queue<Key> queue = new Queue<Key>();
        // if (isEmpty() || lo.compareTo(hi) > 0) return queue;
        keys(root, queue, lo, hi);
        return queue;
    }

    // add the keys between lo and hi in the subtree rooted at x
    // to the queue
    private void keys(Node x, Queue<Key> queue, Key lo, Key hi) {
        if (x == null) return;
        int cmplo = lo.compareTo(x.key);
        int cmphi = hi.compareTo(x.key);
        if (cmplo < 0) keys(x.left, queue, lo, hi);
        if (cmplo <= 0 && cmphi >= 0) queue.enqueue(x.key);
        if (cmphi > 0) keys(x.right, queue, lo, hi);
    }

    /**
     * Returns the number of keys in the symbol table in the given range.
     *
     * @param  lo minimum endpoint
     * @param  hi maximum endpoint
     * @return the number of keys in the symbol table between {@code lo}
     *    (inclusive) and {@code hi} (inclusive)
     * @throws IllegalArgumentException if either {@code lo} or {@code hi}
     *    is {@code null}
     */
    public int size(Key lo, Key hi) {
        if (lo == null) throw new IllegalArgumentException("first argument to size() is null");
        if (hi == null) throw new IllegalArgumentException("second argument to size() is null");

        if (lo.compareTo(hi) > 0) return 0;
        if (contains(hi)) return rank(hi) - rank(lo) + 1;
        else              return rank(hi) - rank(lo);
    }


    /***************************************************************************
     *  Check integrity of red-black tree data structure.
     ***************************************************************************/
    private boolean check() {
        if (!isBST())            StdOut.println("Not in symmetric order");
        if (!isSizeConsistent()) StdOut.println("Subtree counts not consistent");
        if (!isRankConsistent()) StdOut.println("Ranks not consistent");
        if (!is23())             StdOut.println("Not a 2-3 tree");
        if (!isBalanced())       StdOut.println("Not balanced");
        return isBST() && isSizeConsistent() && isRankConsistent() && is23() && isBalanced();
    }

    // does this binary tree satisfy symmetric order?
    // Note: this test also ensures that data structure is a binary tree since order is strict
    private boolean isBST() {
        return isBST(root, null, null);
    }

    // is the tree rooted at x a BST with all keys strictly between min and max
    // (if min or max is null, treat as empty constraint)
    // Credit: Bob Dondero‘s elegant solution
    private boolean isBST(Node x, Key min, Key max) {
        if (x == null) return true;
        if (min != null && x.key.compareTo(min) <= 0) return false;
        if (max != null && x.key.compareTo(max) >= 0) return false;
        return isBST(x.left, min, x.key) && isBST(x.right, x.key, max);
    }

    // are the size fields correct?
    private boolean isSizeConsistent() { return isSizeConsistent(root); }
    private boolean isSizeConsistent(Node x) {
        if (x == null) return true;
        if (x.size != size(x.left) + size(x.right) + 1) return false;
        return isSizeConsistent(x.left) && isSizeConsistent(x.right);
    }

    // check that ranks are consistent
    private boolean isRankConsistent() {
        for (int i = 0; i < size(); i++)
            if (i != rank(select(i))) return false;
        for (Key key : keys())
            if (key.compareTo(select(rank(key))) != 0) return false;
        return true;
    }

    // Does the tree have no red right links, and at most one (left)
    // red links in a row on any path?
    private boolean is23() { return is23(root); }
    private boolean is23(Node x) {
        if (x == null) return true;
        if (isRed(x.right)) return false;
        if (x != root && isRed(x) && isRed(x.left))
            return false;
        return is23(x.left) && is23(x.right);
    }

    // do all paths from root to leaf have same number of black edges?
    private boolean isBalanced() {
        int black = 0;     // number of black links on path from root to min
        Node x = root;
        while (x != null) {
            if (!isRed(x)) black++;
            x = x.left;
        }
        return isBalanced(root, black);
    }

    // does every path from the root to a leaf have the given number of black links?
    private boolean isBalanced(Node x, int black) {
        if (x == null) return black == 0;
        if (!isRed(x)) black--;
        return isBalanced(x.left, black) && isBalanced(x.right, black);
    }

    public static void main(String[] args) {
        RedBlackBST<String, Integer> st = new RedBlackBST<String, Integer>();
        for (int i = 0; !StdIn.isEmpty(); i++) {
            String key = StdIn.readString();
            st.put(key, i);
        }
        StdOut.println();
        for (String s : st.keys())
            StdOut.println(s + " " + st.get(s));
        StdOut.println();
    }
}

 

五.散列表

1.基于拉链法的散列表

package search;

import edu.princeton.cs.algs4.Queue;
import edu.princeton.cs.algs4.StdIn;
import edu.princeton.cs.algs4.StdOut;

public class SeparateChainingHashST<Key, Value> {
    private static final int INIT_CAPACITY = 4;

    private int n;                                // number of key-value pairs
    private int m;                                // hash table size
    private SequentialSearchST<Key, Value>[] st;  // array of linked-list symbol tables

    public SeparateChainingHashST() {
        this(INIT_CAPACITY);
    }

    public SeparateChainingHashST(int m) {
        this.m = m;
        st = (SequentialSearchST<Key, Value>[]) new SequentialSearchST[m];
        for (int i = 0; i < m; i++)
            st[i] = new SequentialSearchST<Key, Value>();
    }

    private void resize(int chains) {
        SeparateChainingHashST<Key, Value> temp = new SeparateChainingHashST<Key, Value>(chains);
        for (int i = 0; i < m; i++) {
            for (Key key : st[i].keys()) {
                temp.put(key, st[i].get(key));
            }
        }
        this.m  = temp.m;
        this.n  = temp.n;
        this.st = temp.st;
    }

    private int hash(Key key) {
        return (key.hashCode() & 0x7fffffff) % m;
    }

    public int size() {
        return n;
    }

    public boolean isEmpty() {
        return size() == 0;
    }

    public boolean contains(Key key) {
        if (key == null) throw new IllegalArgumentException("argument to contains() is null");
        return get(key) != null;
    }

    public Value get(Key key) {
        if (key == null) throw new IllegalArgumentException("argument to get() is null");
        int i = hash(key);
        return st[i].get(key);
    }

    public void put(Key key, Value val) {
        if (key == null) throw new IllegalArgumentException("first argument to put() is null");
        if (val == null) {
            delete(key);
            return;
        }

        // double table size if average length of list >= 10
        if (n >= 10*m) resize(2*m);

        int i = hash(key);
        if (!st[i].contains(key)) n++;
        st[i].put(key, val);
    }

    public void delete(Key key) {
        if (key == null) throw new IllegalArgumentException("argument to delete() is null");

        int i = hash(key);
        if (st[i].contains(key)) n--;
        st[i].delete(key);

        // halve table size if average length of list <= 2
        if (m > INIT_CAPACITY && n <= 2*m) resize(m/2);
    }

    public Iterable<Key> keys() {
        Queue<Key> queue = new Queue<Key>();
        for (int i = 0; i < m; i++) {
            for (Key key : st[i].keys())
                queue.enqueue(key);
        }
        return queue;
    }

    public static void main(String[] args) {
        SeparateChainingHashST<String, Integer> st = new SeparateChainingHashST<String, Integer>();
        for (int i = 0; !StdIn.isEmpty(); i++) {
            String key = StdIn.readString();
            st.put(key, i);
        }

        for (String s : st.keys())
            StdOut.println(s + " " + st.get(s));

    }

}

2.基于线性探测法的散列表

package search;

import edu.princeton.cs.algs4.Queue;
import edu.princeton.cs.algs4.StdIn;
import edu.princeton.cs.algs4.StdOut;

public class LinearProbingHashST<Key, Value> {
    private static final int INIT_CAPACITY = 4;

    private int n;           // number of key-value pairs in the symbol table
    private int m;           // size of linear probing table
    private Key[] keys;      // the keys
    private Value[] vals;    // the values

    public LinearProbingHashST() {
        this(INIT_CAPACITY);
    }

    public LinearProbingHashST(int capacity) {
        m = capacity;
        n = 0;
        keys = (Key[])   new Object[m];
        vals = (Value[]) new Object[m];
    }

    public int size() {
        return n;
    }

    public boolean isEmpty() {
        return size() == 0;
    }

    public boolean contains(Key key) {
        if (key == null) throw new IllegalArgumentException("argument to contains() is null");
        return get(key) != null;
    }

    private int hash(Key key) {
        return (key.hashCode() & 0x7fffffff) % m;
    }

    private void resize(int capacity) {
        LinearProbingHashST<Key, Value> temp = new LinearProbingHashST<Key, Value>(capacity);
        for (int i = 0; i < m; i++) {
            if (keys[i] != null) {
                temp.put(keys[i], vals[i]);
            }
        }
        keys = temp.keys;
        vals = temp.vals;
        m    = temp.m;
    }

    public void put(Key key, Value val) {
        if (key == null) throw new IllegalArgumentException("first argument to put() is null");

        if (val == null) {
            delete(key);
            return;
        }

        // double table size if 50% full
        if (n >= m/2) resize(2*m);

        int i;
        for (i = hash(key); keys[i] != null; i = (i + 1) % m) {
            if (keys[i].equals(key)) {
                vals[i] = val;
                return;
            }
        }
        keys[i] = key;
        vals[i] = val;
        n++;
    }

    public Value get(Key key) {
        if (key == null) throw new IllegalArgumentException("argument to get() is null");
        for (int i = hash(key); keys[i] != null; i = (i + 1) % m)
            if (keys[i].equals(key))
                return vals[i];
        return null;
    }

    public void delete(Key key) {
        if (key == null) throw new IllegalArgumentException("argument to delete() is null");
        if (!contains(key)) return;

        // find position i of key
        int i = hash(key);
        while (!key.equals(keys[i])) {
            i = (i + 1) % m;
        }

        // delete key and associated value
        keys[i] = null;
        vals[i] = null;

        // rehash all keys in same cluster
        i = (i + 1) % m;
        while (keys[i] != null) {
            // delete keys[i] an vals[i] and reinsert
            Key   keyToRehash = keys[i];
            Value valToRehash = vals[i];
            keys[i] = null;
            vals[i] = null;
            n--;
            put(keyToRehash, valToRehash);
            i = (i + 1) % m;
        }

        n--;

        // halves size of array if it‘s 12.5% full or less
        if (n > 0 && n <= m/8) resize(m/2);

        assert check();
    }

    public Iterable<Key> keys() {
        Queue<Key> queue = new Queue<Key>();
        for (int i = 0; i < m; i++)
            if (keys[i] != null) queue.enqueue(keys[i]);
        return queue;
    }

    private boolean check() {

        // check that hash table is at most 50% full
        if (m < 2*n) {
            System.err.println("Hash table size m = " + m + "; array size n = " + n);
            return false;
        }

        // check that each key in table can be found by get()
        for (int i = 0; i < m; i++) {
            if (keys[i] == null) continue;
            else if (get(keys[i]) != vals[i]) {
                System.err.println("get[" + keys[i] + "] = " + get(keys[i]) + "; vals[i] = " + vals[i]);
                return false;
            }
        }
        return true;
    }

    public static void main(String[] args) {
        LinearProbingHashST<String, Integer> st = new LinearProbingHashST<String, Integer>();
        for (int i = 0; !StdIn.isEmpty(); i++) {
            String key = StdIn.readString();
            st.put(key, i);
        }

        // print keys
        for (String s : st.keys())
            StdOut.println(s + " " + st.get(s));
    }
}

 

几种常见的查找算法

原文:https://www.cnblogs.com/wuwuyong/p/12290983.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!