首页 > 编程语言 > 详细

FM算法keras实现

时间:2020-02-11 11:19:52      阅读:348      评论:0      收藏:0      [点我收藏+]

import numpy as np
import pandas as pd
import tensorflow as tf
import keras
import os

import matplotlib.pyplot as plt

from keras.layers import Layer,Dense,Dropout,Input
from keras import Model,activations
from keras.optimizers import Adam
from keras import backend as K
from keras.layers import Layer
from sklearn.datasets import load_breast_cancer

os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ['CUDA_VISIBLE_DEVICES'] = "0"
class FM(Layer):
    def __init__(self, output_dim, latent=10,  activation='relu', **kwargs):
        self.latent = latent
        self.output_dim = output_dim
        self.activation = activations.get(activation)
        super(FM, self).__init__(**kwargs)

    def build(self, input_shape):
        self.b = self.add_weight(name='W0',
                                  shape=(self.output_dim,),
                                  trainable=True,
                                 initializer='zeros')
        self.w = self.add_weight(name='W',
                                 shape=(input_shape[1], self.output_dim),
                                 trainable=True,
                                 initializer='random_uniform')
        self.v= self.add_weight(name='V',
                                 shape=(input_shape[1], self.latent),
                                 trainable=True,
                                initializer='random_uniform')
        super(FM, self).build(input_shape)

    def call(self, inputs, **kwargs):
        x = inputs
        x_square = K.square(x)

        xv = K.square(K.dot(x, self.v))
        xw = K.dot(x, self.w)

        p = 0.5*K.sum(xv-K.dot(x_square, K.square(self.v)), 1)

        rp = K.repeat_elements(K.reshape(p, (-1, 1)), self.output_dim, axis=-1)

        f = xw + rp + self.b

        output = K.reshape(f, (-1, self.output_dim))

        return output

    def compute_output_shape(self, input_shape):
        assert input_shape and len(input_shape)==2
        return input_shape[0],self.output_dim


data = load_breast_cancer()["data"]
target = load_breast_cancer()["target"]

K.clear_session()
print(target)
inputs = Input(shape=(30,))
out = FM(20)(inputs)
out = Dense(15, activation='sigmoid')(out)
out = Dense(1, activation='sigmoid')(out)

model=Model(inputs=inputs, outputs=out)
model.compile(loss='mse',
              optimizer='adam',
              metrics=['acc'])
model.summary()

h=model.fit(data, target, batch_size=1, epochs=10, validation_split=0.2)

#%%

plt.plot(h.history['acc'],label='acc')
plt.plot(h.history['val_acc'],label='val_acc')
plt.xlabel('epoch')
plt.ylabel('acc')

#%%

FM算法keras实现

原文:https://www.cnblogs.com/zhouyu0-0/p/12293880.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!