首页 > 其他 > 详细

PP: GRU-ODE-Bayes: Continuous modeling of sporadically-observed time series

时间:2020-02-12 00:11:58      阅读:90      评论:0      收藏:0      [点我收藏+]

From: KU Leuven; ESAT-STADIUS比利时鲁汶大学

?? How to model real-world multidimensional time series? especially, when these are sporadically observed data. 

?? how to describe the evolution of the probability distribution of the data?  ODE dynamics.

sporadically-observed time series: sampling is irregular both in time and across dimensions. 

Evaluation on both synthetic data and real-world data.

Combine GRU-ODE and GRU-Bayes into GRU-ODE-Bayes model. 

Introduction: 

most methodology assumption: signals are measured systematically at fixed time intervals. 

However, most real-world data is sporadic. 

fixed time intervals data VS sporadic data.  

How to model sporadic data becomes a challenge. 

neural ordinary differential equation model; It opens the perspective of tackling the issue of irregular sampling. 

interleave the ODE and the input processing steps; + GRU + Bayesian update network. 

Performance metric: MSE, mean square error; NegLL, non-negative log-likelihood. 

?? 可是他解决了一个什么问题还不知道,只知道 是model sporadical time series. 

 

PP: GRU-ODE-Bayes: Continuous modeling of sporadically-observed time series

原文:https://www.cnblogs.com/dulun/p/12297378.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!