首页 > 其他 > 详细

PP: Neural ordinary differential equations

时间:2020-02-12 09:50:23      阅读:77      评论:0      收藏:0      [点我收藏+]

Instead of specifying a discrete sequence of hidden layers, we parameterize the derivative of the hidden state using a neural network. 

Before: a discrete sequence of hidden layers.

After: the derivative of the hidden state.

Traditional methods: residual networks, RNN decoders, and normalizing flows build complicated transformations by composing a sequence of transformations to a hidden state.

we parameterize the continuous dynamics of hidden units using an ordinary differential equation (ODE) 常微分函数.

将h(t) 看作一个函数,可以用一个neural network学习h(t)的分布,然后输入层h(0) ----> 输出层h(T); 

PP: Neural ordinary differential equations

原文:https://www.cnblogs.com/dulun/p/12297633.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!