首页 > 其他 > 详细

《组合数学》课程复习

时间:2014-08-31 17:02:51      阅读:310      评论:0      收藏:0      [点我收藏+]

Many counting problems are solved by establishing a bijection between the set to be counted and some easy-to-count set. This kind of proofs are usually called (non-rigorously) combinatorial proofs.

 

The number of k-compositions of n is equal to the number of solutions to bubuko.com,布布扣 in positive integers. 

count the number of solutions to bubuko.com,布布扣 in nonnegative integers  We call such a solution a weak k-composition of n.

 

 Formally, a multiset M on a set S is a function bubuko.com,布布扣. For any element bubuko.com,布布扣, the integer bubuko.com,布布扣 is the number of repetitions of x in M, called the multiplicity of x. The sum of multiplicities bubuko.com,布布扣 is called the cardinality of M and is denoted as M | . 

 we have already evaluated the number bubuko.com,布布扣. If bubuko.com,布布扣, let zi = m(xi), then bubuko.com,布布扣 is the number of solutions to bubuko.com,布布扣 in nonnegative integers, which is the number of weak n-compositions of k, which we have seen is bubuko.com,布布扣.

 

We can think of it as that n labeled balls are assigned to m labeled bins, and bubuko.com,布布扣 is the number of assignments such that the i-th bin has ai balls in it.

 

《组合数学》课程复习

原文:http://www.cnblogs.com/shijjchn/p/3947762.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!