import torch from PIL import Image import matplotlib.pyplot as plt # loader使用torchvision中自带的transforms函数 loader = transforms.Compose([ transforms.ToTensor()]) unloader = transforms.ToPILImage() # 输入图片地址 # 返回tensor变量 def image_loader(image_name): image = Image.open(image_name).convert(‘RGB‘) image = loader(image).unsqueeze(0)#用来满足网络的输入维度的假batch维度,即不足之处补0 return image.to(device, torch.float) # 输入PIL格式图片 # 返回tensor变量 def PIL_to_tensor(image): image = loader(image).unsqueeze(0) return image.to(device, torch.float) # 输入tensor变量 # 输出PIL格式图片 def tensor_to_PIL(tensor): image = tensor.cpu().clone() image = image.squeeze(0)#移除假batch维度,即删掉上面添加的0 image = unloader(image) return image #直接展示tensor格式图片 def imshow(tensor, title=None): image = tensor.cpu().clone() # we clone the tensor to not do changes on it image = image.squeeze(0) # remove the fake batch dimension image = unloader(image) plt.imshow(image) if title is not None: plt.title(title) plt.pause(0.001) # pause a bit so that plots are updated #直接保存tensor格式图片 def save_image(tensor, **para): dir = ‘results‘ image = tensor.cpu().clone() # we clone the tensor to not do changes on it image = image.squeeze(0) # remove the fake batch dimension image = unloader(image) if not osp.exists(dir): os.makedirs(dir) image.save(‘results_{}/s{}-c{}-l{}-e{}-sl{:4f}-cl{:4f}.jpg‘ .format(num, para[‘style_weight‘], para[‘content_weight‘], para[‘lr‘], para[‘epoch‘], para[‘style_loss‘], para[‘content_loss‘]))
原文:https://www.cnblogs.com/tingtin/p/12288619.html