首页 > 其他 > 详细

62. Unique Paths

时间:2020-02-18 00:48:24      阅读:126      评论:0      收藏:0      [点我收藏+]

A robot is located at the top-left corner of a m x n grid (marked ‘Start‘ in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked ‘Finish‘ in the diagram below).

How many possible unique paths are there?

技术分享图片
Above is a 7 x 3 grid. How many possible unique paths are there?

Note: m and n will be at most 100.

Example 1:

Input: m = 3, n = 2
Output: 3
Explanation:
From the top-left corner, there are a total of 3 ways to reach the bottom-right corner:
1. Right -> Right -> Down
2. Right -> Down -> Right
3. Down -> Right -> Right

Example 2:

Input: m = 7, n = 3
Output: 28

 1 class Solution {
 2     public int uniquePaths(int m, int n) {
 3         int [][]dp = new int[m][n];
 4         dp[0][0] = 1;
 5         for (int i = 0; i < m; ++i) {
 6             for (int j = 0; j < n; ++j) {
 7                 if (j - 1 >= 0) dp[i][j] += dp[i][j - 1];
 8                 if (i - 1 >= 0) dp[i][j] += dp[i - 1][j];
 9             }
10         }
11         return dp[m - 1][n - 1];
12     }
13 }

 

62. Unique Paths

原文:https://www.cnblogs.com/hyxsolitude/p/12324065.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!