首页 > 其他 > 详细

卷积神经网络进阶

时间:2020-02-20 01:26:22      阅读:129      评论:0      收藏:0      [点我收藏+]

卷积神经网络进阶

使用全连接层的局限性:

  • 图像在同一列邻近的像素在这个向量中可能相距较远。它们构成的模式可能难以被模型识别。
  • 对于大尺寸的输入图像,使用全连接层容易导致模型过大。

使用卷积层的优势:

  • 卷积层保留输入形状。
  • 卷积层通过滑动窗口将同一卷积核与不同位置的输入重复计算,从而避免参数尺寸过大。

LeNet

LeNet分为卷积层块和全连接层块两个部分,交替使用卷积层和最大池化层后接全连接层来进行图像分类。下面我们分别介绍这两个模块。

技术分享图片

卷积层块里的基本单位是卷积层后接平均池化层:卷积层用来识别图像里的空间模式,如线条和物体局部,之后的平均池化层则用来降低卷积层对位置的敏感性。

卷积层块由两个这样的基本单位重复堆叠构成。在卷积层块中,每个卷积层都使用\(5 \times 5\)的窗口,并在输出上使用sigmoid激活函数。第一个卷积层输出通道数为6,第二个卷积层输出通道数则增加到16。

全连接层块含3个全连接层。它们的输出个数分别是120、84和10,其中10为输出的类别个数。

LeNet: 在大的真实数据集上的表现并不尽如?意。
1.神经网络计算复杂。
2.还没有?量深?研究参数初始化和?凸优化算法等诸多领域。

AlexNet

首次证明了学习到的特征可以超越??设计的特征,从而?举打破计算机视觉研究的前状。
特征:

  1. 8层变换,其中有5层卷积和2层全连接隐藏层,以及1个全连接输出层。
  2. 将sigmoid激活函数改成了更加简单的ReLU激活函数。
  3. 用Dropout来控制全连接层的模型复杂度。
  4. 引入数据增强,如翻转、裁剪和颜色变化,从而进一步扩大数据集来缓解过拟合。

技术分享图片

使用重复元素的网络(VGG)

VGG:通过重复使?简单的基础块来构建深度模型。
Block:数个相同的填充为1、窗口形状为\(3\times 3\)的卷积层,接上一个步幅为2、窗口形状为\(2\times 2\)的最大池化层。
卷积层保持输入的高和宽不变,而池化层则对其减半。

技术分享图片

?络中的?络(NiN)

LeNet、AlexNet和VGG:先以由卷积层构成的模块充分抽取 空间特征,再以由全连接层构成的模块来输出分类结果。
NiN:串联多个由卷积层和“全连接”层构成的小?络来构建?个深层?络。
?了输出通道数等于标签类别数的NiN块,然后使?全局平均池化层对每个通道中所有元素求平均并直接?于分类。

技术分享图片

1×1卷积核作用
1.放缩通道数:通过控制卷积核的数量达到通道数的放缩。
2.增加非线性。1×1卷积核的卷积过程相当于全连接层的计算过程,并且还加入了非线性激活函数,从而可以增加网络的非线性。
3.计算参数少

NiN重复使?由卷积层和代替全连接层的1×1卷积层构成的NiN块来构建深层?络。
NiN去除了容易造成过拟合的全连接输出层,而是将其替换成输出通道数等于标签类别数 的NiN块和全局平均池化层。
NiN的以上设计思想影响了后??系列卷积神经?络的设计。

GoogLeNet

  1. 由Inception基础块组成。
  2. Inception块相当于?个有4条线路的??络。它通过不同窗口形状的卷积层和最?池化层来并?抽取信息,并使?1×1卷积层减少通道数从而降低模型复杂度。
  3. 可以?定义的超参数是每个层的输出通道数,我们以此来控制模型复杂度。

技术分享图片

完整模型结构

技术分享图片

卷积神经网络进阶

原文:https://www.cnblogs.com/yu212223/p/12334060.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!