首页 > 其他 > 详细

pytroch 掌握深度模型构建精髓

时间:2020-02-23 21:48:18      阅读:90      评论:0      收藏:0      [点我收藏+]

pytorch几十行代码搞清楚模型的构建和训练

import torch
import torch.nn as nn

N, D_in, H, D_out = 64, 1000, 100, 10
# data
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)

# mdoel define
class TwoLayerNet(nn.Module):
    def __init__(self, D_in, H, D_out):
        # main layers
        super(TwoLayerNet, self).__init__()
        self.linear1 = nn.Linear(D_in, H)
        self.linear2 = nn.Linear(H, D_out)
        
    def forward(self, x):
        y_pred = self.linear2(self.linear1(x).clamp(min=0))
        return y_pred
    
# init model
loss_fn = nn.MSELoss(reduction=sum)
model = TwoLayerNet(D_in, H, D_out)
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)

# training
for i in range(500):
    # 1.forward pass
    y_pred = model(x)
    
    # 2.compute loss
    loss = loss_fn(y_pred, y)
    print(i, loss.item())
    
    optimizer.zero_grad()
    # 3.backward pass
    loss.backward()
    
    # 4.weights update
    optimizer.step()
    

 

pytroch 掌握深度模型构建精髓

原文:https://www.cnblogs.com/demo-deng/p/12354158.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!