学习资料:https://www.bilibili.com/video/av62138405?p=5
源代码:
‘‘‘
mnist数据集
60000张训练图片
10000张测试图片
‘‘‘
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
print("PyTorch Version: ", torch.__version__)
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 20, 5, 1) # 28+1-5 = 24
self.conv2 = nn.Conv2d(20, 50, 5, 1)
self.fc1 = nn.Linear(4*4*50, 500)
self.fc2 = nn.Linear(500, 10)
def forward(self, x):
# x: 1 * 28 * 28
x = F.relu(self.conv1(x)) # 20 * 24 * 24
x = F.max_pool2d(x, 2, 2) # 20 * 12 * 12
x = F.relu(self.conv2(x)) # 50 * 8 * 8
x = F.max_pool2d(x, 2, 2) # 50 * 4 * 4
x = x.view(-1, 4*4*50) #reshape (5*2*10),view(5*20) -> (5*20)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return F.log_softmax(x, dim=1)
mnist_data = datasets.MNIST("./mnist_data", train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
]))
data = [d[0].data.cpu().numpy() for d in mnist_data]
# np.mean(data) = 0.1306062
# np.std(data) = 0.30810776
def train(model, device, train_loader, optimizer, epoch):
model.train()
for idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
pred = model(data) # batch_size *10
loss = F.nll_loss(pred, target)
#SGD
optimizer.zero_grad()
loss.backward()
optimizer.step()
if idx % 100 ==0:
print ("Train Epoch:{}, iteration:{}, Loss:{}".format(
epoch, idx, loss.item()))
def test(model, device, test_dataloader):
model.eval()
total_loss = 0.
correct = 0.
with torch.no_grad():
for idx, (data, target) in enumerate(test_dataloader):
data, target = data.to(device), target.to(device)
output = modetl(data) # batch_size *10
total_loss += F.nll_loss(output, target, reduction="sum").item()
pred = output.argmax(dim =1)
correct += pred.eq(target.view_as(pred)).sum().item()
total_loss /= len(test_dataloader.dataset)
acc = correct/len(test_dataloader.dataset) * 100.
print("Test loss:{}, Accuracy:{}".format(total_loss, acc))
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
batch_size = 32
train_dataloader = torch.utils.data.DataLoader(
datasets.MNIST("./mnist_data", train=True, download=False,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307, ), (0.3081, ))
])),
batch_size=batch_size, shuffle=True,
pin_memory=True #pip_memory 和加速计算有关
)
test_dataloader = torch.utils.data.DataLoader(
datasets.MNIST("./mnist_data", train=False, download=False,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307, ), (0.3081, ))
])),
batch_size=batch_size, shuffle=True,
pin_memory=True #pip_memory 和加速计算有关
)
lr = 0.01
momentum = 0.5
model = Net().to(device)
optimizer = torch.optim.SGD(model.parameters(), lr=lr, momentum=momentum)
num_epochs = 2
for epoch in range(num_epochs):
train(model, device, train_dataloader, optimizer, epoch)
test(model, device, test_dataloader)
torch.save(model.state_dict(), "mnist_cnn.pt")
运行结果:
PyTorch学习笔记——cnn训练测试mnist手写数字数据集
原文:https://www.cnblogs.com/douliyoutang01/p/12367198.html