首页 > 其他 > 详细

关于torch.nn.Linear的笔记

时间:2020-02-28 12:59:42      阅读:103      评论:0      收藏:0      [点我收藏+]

关于该类:

torch.nn.Linear(in_features, out_features, bias=True)

可以对输入数据进行线性变换:

$y  = x A^T + b$

in_features: 输入数据的大小。

out_features: 输出数据的大小。

bias: 是否添加一个可学习的 bias,即上式中的 $b$。

 

该线性变换,只对输入的 tensor 的最后一维进行:

例如我们有一个Linear层如下:

m = nn.Linear(20, 30)

 

示例1:

input = torch.randn(2, 5, 8, 20)
output = m(input)
print(output.size())

结果:

torch.Size([2, 5, 8, 30])

 

示例2:

input = torch.randn(20)
output = m(input)
print(output.size())

结果:

torch.Size([30])

 

关于torch.nn.Linear的笔记

原文:https://www.cnblogs.com/dilthey/p/12376457.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!