略
Andrew Ng在cost function Intuition I中对hypothesis和cost function做了对比
cost function \(J(\theta_1)\):是参数\(\theta_1\)的函数
\(\theta_1\)和\(\theta_2\)要同时更新,不然就会出错
\[\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)\]
无论\(\frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)\)的符号是什么,\(\theta_1\)都会收敛到使得cost function取得最小值的点,符号是正时,\(\theta_1\)减小,符号是负时,\(\theta_1\)增大。
\[ \begin{aligned} \frac{\partial}{\partial \theta_{j}} J(\theta) &=\frac{\partial}{\partial \theta_{j}} \frac{1}{2}\left(h_{\theta}(x)-y\right)^{2} \&=2 \cdot \frac{1}{2}\left(h_{\theta}(x)-y\right) \cdot \frac{\partial}{\partial \theta_{j}}\left(h_{\theta}(x)-y\right) \&=\left(h_{\theta}(x)-y\right) \cdot \frac{\partial}{\partial \theta_{j}}\left(\sum_{i=0}^{n} \theta_{i} x_{i}-y\right) \&=\left(h_{\theta}(x)-y\right) x_{j} \end{aligned} \]
【Course】Machine learning:Week 1-Lecture1&Lecture2
原文:https://www.cnblogs.com/Ireland/p/12383594.html