首页 > 其他 > 详细

最小二乘估计及证明

时间:2020-03-01 22:43:06      阅读:56      评论:0      收藏:0      [点我收藏+]

https://blog.csdn.net/qq_31073871/article/details/81067301

已知变量X和Y为线性关系(这里XY均为nx1的列向量),为了得知X和Y到底具有怎样的线性关系(也即求解X的系数),如果这是一个工程问题,我们解决这一问题的方法就是对X和Y进行采样,获得很多组样本,然后就能求解出系数了,按照线代的理论,系数矩阵为nxn方阵,且秩为n时,方程具有唯一解,如果采样点过多,也即方程的数目多于未知数的数目,则方程组无解,这时只能求出一个近似解,以不同的目的获得的近似解是不同的,如果为了使方程左右两边的误差的平方和最小,而获得的近似解,就是最小二乘解(所谓“二乘”,就是“平方”的意思,最小二乘就是最小平方和)。这个问题的证明在研究生的矩阵分析引论数学课上学过,现在也忘光了,只记得结论表达式了。

例子:假设变量y是n个变量xi的线性组合,求系数。

设方程为AX=y,也即

为了计算出系数a1、a2、···an的值,我们至少需要n次X、Y的采样值,形如:

技术分享图片

技术分享图片

技术分享图片

这样就能求解出系数a1、a2、···an的值了,如果采样样本不止n个,而是多于n个,也不要紧,虽然会会造成方程组无解,但是可以求出最小二乘解。

把方程组写成矩阵形式为:

XA=Y     (式2)

技术分享图片

至此,就求出了所有的系数ai

-----------------------------------------------------后记---------------------------------------------------------------------

又翻了电子版课本,把最小二乘的证明过程也贴上来:

证明过程在《矩阵分析引论》第30页。证明过程需要用到子空间的概念,这一概念的定义在第6页。

技术分享图片

技术分享图片

 技术分享图片

 最后简单整理一下证明过程:

技术分享图片
————————————————
版权声明:本文为CSDN博主「qq_610642」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/qq_31073871/article/details/81067301

最小二乘估计及证明

原文:https://www.cnblogs.com/sggggr/p/12392605.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!