首页 > 其他 > 详细

Splay模版

时间:2020-03-01 23:28:31      阅读:88      评论:0      收藏:0      [点我收藏+]

首先需要先知道一个概念: 二叉搜索树 —— 左孩子比父亲小,右孩子大于等于父亲

 

一、Splay的旋转

旋转是Splay的精髓也是至关重要的操作 

旋转也分为左旋、右旋

这里是直接概括了所有旋转的规律:

技术分享图片

 

 

我们定义一个结点与他父亲的关系是 x ,那么在旋转时,他的父亲成为了他的 !x 儿子,并且那个上文中所说的“多余结点”,同时也是当前节点的 !x 儿子,但在旋转之后需要成为当前节点的“前”父节点的 x 儿子。

我们可以先看看这部分的代码

inline bool get_which(int x) {
    return sons[f[x]][1] == x;
}

inline void update(int x) {
    if (x) {
        sub_siz[x] = cnt[x];
        if (sons[x][0])
            sub_siz[x] += sub_siz[sons[x][0]];
        if (sons[x][1])
            sub_siz[x] += sub_siz[sons[x][1]];
    }
}

inline void rotate(int x) {
    int father = f[x],grand_father = f[father],which_son = get_which(x);
    sons[father][which_son] = sons[x][which_son^1]; // 修改"前父亲"的孩子
    f[sons[father][which_son]] = father; // 修改孩子的父亲
    sons[x][which_son^1] = father; // 修改 x 的孩子
    f[father] = x; // 修改"前父亲"的父亲
    f[x] = grand_father; // 修改当前 x 的父亲
    if (grand_father)
        sons[grand_father][sons[grand_father][1] == father] = x;
    update(father);
    update(x);
}

 

Spaly操作:

只需要记住一句话:我们在链很长的时候,每次执行先旋父节点再旋当前节点的操作,一次总操作之后,这条链的深度会减半。

inline void splay(int x) {
    for (int fa;fa=f[x];rotate(x))
        if (f[fa])
            rotate((get_which(x)==get_which(fa))?fa:x);
    root=x;
}

 

我们在进行与点有关的操作的时候都需要进行Splay,借此来维护树的随机性

 

模版:

#include <iostream>
#include <algorithm>
#include <string>
#include <string.h>
#include <vector>
#include <map>
#include <stack>
#include <set>
#include <queue>
#include <math.h>
#include <cstdio>
#include <iomanip>
#include <time.h>
#include <bitset>
#include <cmath>
#include <sstream>

#define LL long long
#define INF 0x3f3f3f3f
#define ls nod<<1
#define rs (nod<<1)+1

const double eps = 1e-10;
const int maxn = 1e6 + 10;;
const LL mod = 1e9 + 7;

int sgn(double a){return a < -eps ? -1 : a < eps ? 0 : 1;}
using namespace std;

int f[maxn],cnt[maxn],val[maxn],sons[maxn][2],sub_siz[maxn];
int whole_siz,root;

inline void S_clear(int x) {
    sons[x][0] = sons[x][1] = sub_siz[x] = cnt[x] = val[x] = 0;
}

inline bool get_which(int x) {
    return sons[f[x]][1] == x;
}

inline void update(int x) {
    if (x) {
        sub_siz[x] = cnt[x];
        if (sons[x][0])
            sub_siz[x] += sub_siz[sons[x][0]];
        if (sons[x][1])
            sub_siz[x] += sub_siz[sons[x][1]];
    }
}

inline void rotate(int x) {
    int father = f[x],grand_father = f[father],which_son = get_which(x);
    sons[father][which_son] = sons[x][which_son^1];
    f[sons[father][which_son]] = father;
    sons[x][which_son^1] = father;
    f[father] = x;
    f[x] = grand_father;
    if (grand_father)
        sons[grand_father][sons[grand_father][1] == father] = x;
    update(father);
    update(x);
}

inline void splay(int x) {
    for (int fa;fa=f[x];rotate(x))
        if (f[fa])
            rotate((get_which(x)==get_which(fa))?fa:x);
    root=x;
}

inline void ins(int x) {
    if (!root) {
        whole_siz++;
        sons[whole_siz][0] = sons[whole_siz][1] = f[whole_siz] = 0;
        root = whole_siz;
        sub_siz[whole_siz] = cnt[whole_siz] = 1;
        val[whole_siz] = x;
        return ;
    }
    int now = root,fa = 0;
    while (1) {
        if (x == val[now]) {
            cnt[now]++;
            update(now);
            update(fa);
            splay(now);
            break;
        }
        fa = now;
        now = sons[now][val[now]<x];
        if (!now) {
            whole_siz++;
            sons[whole_siz][0] = sons[whole_siz][1] = 0;
            f[whole_siz] = fa;
            sub_siz[whole_siz] = cnt[whole_siz] = 1;
            sons[fa][val[fa]<x] = whole_siz;
            val[whole_siz] = x;
            update(fa);
            splay(whole_siz);
            break;
        }
    }
}

inline int find_num(int x) {
    int now = root;
    while (1) {
        if (sons[now][0] && x <= sub_siz[sons[now][0]])
            now = sons[now][0];
        else {
            int tmp = (sons[now][0]?sub_siz[sons[now][0]]:0)+cnt[now];
            if (x <= tmp)
                return val[now];
            x -= tmp;
            now = sons[now][1];
        }
    }
}

inline int find_rank(int x) {
    int now = root,ans = 0;
    while (1) {
        if (x < val[now])
            now = sons[now][0];
        else {
            ans += (sons[now][0]?sub_siz[sons[now][0]]:0);
            if (x == val[now]) {
                splay(now);
                return ans+1;
            }
            ans += cnt[now];
            now = sons[now][1];
        }
    }
}

inline int find_pre() {
    int now = sons[root][0];
    while (sons[now][1])
        now = sons[now][1];
    return now;
}

inline int find_suffix() {
    int now = sons[root][1];
    while (sons[now][0])
        now = sons[now][0];
    return now;
}

inline void my_delete(int x) {
    int hhh = find_rank(x);
    if (cnt[root] > 1) {
        cnt[root]--;
        update(root);
        return ;
    }
    if (!sons[root][0] && !sons[root][1]) {
        S_clear(root);
        root = 0;
        whole_siz = 0;
        return ;
    }
    if (!sons[root][0]) {
        int old_root = root;
        root = sons[root][1];
        f[root] = 0;
        S_clear(old_root);
        return ;
    }
    else if (!sons[root][1]) {
        int old_root = root;
        root = sons[root][0];
        f[root] = 0;
        S_clear(old_root);
        return ;
    }
    int left_max = find_pre(),old_root = root;
    splay(left_max);
    sons[root][1] = sons[old_root][1];
    f[sons[old_root][1]] = root;
    S_clear(old_root);
    update(root);
}

int main(){
    int m,num,be_dealt;
    cin >> m;
    for(int i = 1;i <= m;i++){
        cin >> num;
        cin >> be_dealt;
        switch(num)
        {
            case 1:ins(be_dealt);break;
            case 2:my_delete(be_dealt);break;
            case 3:printf("%d\n",find_rank(be_dealt));break;
            case 4:printf("%d\n",find_num(be_dealt));break;
            case 5:ins(be_dealt);printf("%d\n",val[find_pre()]);my_delete(be_dealt);break;
            case 6:ins(be_dealt);printf("%d\n",val[find_suffix()]);my_delete(be_dealt);break;
        }
    }
    return 0;
}

 

参考博客:https://www.luogu.com.cn/blog/pks-LOVING/more-senior-data-structure-te-bie-qian-di-qian-tan-splay

Splay模版

原文:https://www.cnblogs.com/-Ackerman/p/12392703.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!