首页 > 其他 > 详细

NumPy矩阵与通用函数

时间:2020-03-07 00:51:59      阅读:90      评论:0      收藏:0      [点我收藏+]

创建与组合矩阵

  使用mat函数创建矩阵:matr1 = np.mat("1 2 3;4 5 6;7 8 9")

  使用matrix函数创建矩阵:matr2 = np.matrix([[123],[456],[789]])

  使用bmat函数合成矩阵:np.bmat("arr1 arr2;arr1 arr2")

      In[1]:  import numpy as np    #导入NumPy库

           matr1 = np.mat("1  2  3;4  5  6;7  8  9")    #使用分号隔开数据

           print(matr1)

      Out[1]:  [[1  2  3]

             [4  5  6]

             [7  8  9]]

      In[2]:  matr2 = np.matrix([[1,2,3],[4,5,6],[7,8,9]])

           print()

      Out[2]:  [[1  2  3]

            [4  5  6]

            [7  8  9]]

      In[3]:  arr1 = np.eye(3)  #创建数组1

            print(arr1)  

      Out[3]:  [[1.  0.  0. ]

            [0.  1.  0.]

            [0.  0.  1. ]]

      In[4]:  arr2 = 3 * arr1  #创建数组2

           print(arr2)

      Out[4]:  [[3.  0.  0. ]

            [0.  3.  0. ]

            [0.  0.  3. ]]

      In[5]:  np.bmat("arr1  arr2;"arr1  arr2)  #创建的矩阵

      Out[5]:  [[1.  0.  0.  3.  0.  0. ]

            [0.  1.  0.  0.  3.  0. ]

            [0.  0.  1.  0.  0.  3. ]]

      In[6]:  matr1 = np.bmat("1 2 3;4 5 6;7 8 9")  #创建矩阵

           print(matr1)

      Out[6]:  [[1  2  3]

            [4  5  6]

            [7  8  9]]

  矩阵的运算

  矩阵与数相乘:matrl*3

  矩阵相加减:,atr1+-matr2

  矩阵相乘:matr1*matr2

  矩阵对应元素相乘:np.multiply(matr1,matr2)

  矩阵特有属性:

技术分享图片

 

 

       In[6]:  matr1 = np.mat("1  2  3;4  5  6;7  8  9")  #创建矩阵1

             print(matr1)

      Out[6]:  [[1  2  3]

            [4  5  6]

            [7  8  9]]

      In[7]:  matr2 = matr1*3  #创建矩阵2

           print(matr2)

      Out[7]:  [[3  6  9]

            [12  15  18]

            [21  24  27]]

      In[8]:  print(matr1+matr2)  #矩阵相加

      Out[8]:  [[4  8  12]

            [16  20  24]

            [28  32  36]]

      In[9]:  print(matr1 - matr2)  #矩阵相减

      Out[9]:  [[-2  -4  -6]

            [-8  -10  -12]

            [-14  -16  -18]]

      In[10]:  print(matr1 * matr2)  #矩阵相乘

      Out[10]:  [[90  108  126]

            [198  243  288]

            [306  378  450]]

      In[11]:  print(np.multiply(matr1,matr2))

      Out[11]:  [[3  12  27]

            [48  75  108]

            [147  192  243]]

      In[12]:  print(matr1.T)  #转置

      Out[12]:  [[1  4  7]

            [2  5  8]

            [3  6  9]]

      In[13]:  print(matr1.H)  #共轭转置(实数的共轭就是其本身)

      Out[13]:  [[1  4  7]

            [2  5  8]

            [3  6  9]]

      In[14]:  print(matr1.I)  #逆矩阵

      Out[14]:  [[-4.50359963e+15  9.00719925e+15  -4.05359963e+15]

            [9.00719925e+15  -1.80143985e+16  9.00719925e+15]

            [-4.50359963e+15  9.00719925e+15  -4.50359963e+15]]

      In[15]:  print(matr1.A)  #返回二维数组的视图

      Out[15]:  [[1  2  3]

            [4  5  6]

            [7  8  9]]

 

 

ufunc函数

  全称通用函数,是一种能够对数组中所有元素进行操作的函数。

  四则运算:加(+)、减(-)、乘(*)、除(/)、幂(**)。数组间的四则运算表示对每个数组中的元素分别进行四则运算,所以形状必须相同。

  比较运算:>、<、==、<=、!=。比较运算返回的结果是一个布尔数组,每个元素为每个数组对应元素的比较结果。

  逻辑运算:np.any函数表示逻辑"or",np.all函数表示逻辑"and"。运算结果返回布尔值。

      In[16]:  x = np.array[1,2,3]

           y = np.array[4,5,6]

           print(x + y)  #数组相加

      Out[16]:  [5  7  9]

      In[17]:  print(x - y)  #数组相减

      Out[17]:  [-3  -3  -3]

      In[18]:  print(x * y)  #数组相乘

      Out[18]:  [4  10  18]

      In[19]:  print(x / y)  #数组相除

      Out[19]:  [0.25  0.4  0.5]

      In[20]:  print(x ** y)  #数组幂运算

      Out[20]:  [1  32  729]

 

  数组的比较运算:

      In[21]:  x = np.array([1,3,5])

           y = np.array([2,3,4])

           print(x < y)

      Out[21]:  [True  False  False]

      In[22]:  print(x > y)

      Out[22]:  [False  False  True]

      In[23]:  print(x == y)

      Out[23]:  [False  True  False]

      In[24]:  print(x >= y)

      Out[24]:  [False  True  True]

      In[25]:  print(x <= y)

      Out[25]:  [True  True  False]

      In[26]:  print(x != y)

      Out[26]:  [True  False  True]

      In[27]:  print(np.all(x  ==  y))  #np.all( )表示逻辑and

      Out[27]:  False

      In[28]:  print(np.any(x == y))  #np.any( )表示逻辑or

      Out[28]:  True

 

  ufunc函数的广播机制:

  广播是指不同形状的数组之间执行算数运算的方式。需要遵循4个原则。

  *  让所有输入数组都向其中shape最长的数组看齐,shape中不足的部分都通过在前面加1补齐。

  *  输出数组的shape是输入数组shape的各个轴上的最大值。

  *  如果输入数组的某个轴和输出数组的对应轴的长度相同或者其长度为1时,这个数组能够用来计算,否则出错。

  *  当输入数组的某个轴的长度为1时,沿着此轴运算时都用此轴上的第一组值。

一维数组的广播机制:

      In[29]:  arr1 = np.array([[0,0,0],[1,1,1],[2,2,2],[3,3,3]])

           print(arr1)

      Out[29]:  [[0  0  0]

            [1  1  1]

            [2  2  2]

            [3  3  3]]

      In[30]:  print(arr1.shape)

      Out[30]:  (4, 3)

      In[31]:  arr2 = np.array([1,2,3])

           print(arr2)

      Out[31]:  [1  2  3]

      In[32]:  print(arr2.shape)

      Out[32]:  (3,)

      In[33]:  print(arr1 + arr2)

      Out[33]:  [[1  2  3]

            [2  3  4]

            [3  4  5]

            [4  5  6]]

 

 技术分享图片

技术分享图片

 

 

 

 

 

二维数组的广播机制:

      In[34]:  arr1 = np.array([0,0,0],[1,1,1],[2,2,2],[3,3,3])

           print(arr1)

      Out[34]:  [[0  0  0]

            [1  1  1]

            [2  2  2]

            [3  3  3]]

      In[35]:  print(arr1.shape)

      Out[35]:  (4,3)

      In[36]:  arr2 = np.array([1,2,3,4]).reshape((4,1))

           print(arr2)

      Out[36]:  [[1]

            [2]

            [3]

            [4]]

      In[37]:  print(arr2.shape)

      Out[37]:  (4, 1)

      In[38]:  print(arr1 + arr2)

      Out[38]:  [[1  1  1]

            [3  3  3]

            [5  5  5]

            [7  7  7]]

技术分享图片

 

 

 技术分享图片

 

 

 技术分享图片

 

 

 

 技术分享图片

 

 

 矩阵乘法 

  1、确认矩阵是否可以相乘。只有第一个矩阵的的个数等于第二个矩阵的的个数,这样的两个矩阵才能相乘。图示的两个矩阵可以相乘,因为第一个矩阵,矩阵A有3列,而第二个矩阵,矩阵B有3行。

技术分享图片

 

 

 

  2、计算结果矩阵的行列数。画一个空白的矩阵,来代表矩阵乘法的结果。矩阵A和矩阵B相乘得到的矩阵,与矩阵A有相同的行数,与矩阵B有相同的列数

矩阵A有2行,所以结果矩阵也有2行。矩阵B有2列,所以结果矩阵也有2列。最终的结果矩阵就有2行2列。

技术分享图片

 

 

 

  3、计算第一个“点”。要计算矩阵中的第一个“点”,你需要用第一个矩阵第一行的第一个数乘以第二个矩阵第一列的第一个数,第一行的第二个数乘以第一列的第二个数,第一行的第三个数乘以第一列的第三个数,然后将这三个结果加到一起,得到第一个点。先来计算一下结果矩阵中第二行第二列的数,下面是算法:

6 x -5 = -30

1 x 0 = 0

2 x 2 = -4

-30 + 0 + (-4) = -34

结果是-34,对应了矩阵最右下角的位置。

在你计算矩阵乘法时,结果所处的行列位置要满足,行和第一个矩阵的行相同,列和第二个矩阵的列相同。比如,你用矩阵A最下面一行的数乘以矩阵B最右一列的数,得到的结果是-34,所以-34应该是结果矩阵中最右下角的一个数。

 技术分享图片

 

 

 

  4、计算第二个“点”。比如计算最左下角的数,你需要用第一个矩阵最下面一行的数乘以第二个矩阵最左列的数,然后再把结果相加。具体计算方法和上面一样。

6 x 4 = 24

1 x (-3) = -3

(-2) x 1 = -2

24 + (-3) + (-2) = 19

结果是-19,对应矩阵左下角的位置。

技术分享图片

 

 

 

  5、在计算剩下的两个“点”。要计算左上角的数,用矩阵A的最上面一行的数乘以矩阵B左侧一列的数,下面是具体算法:

2 x 4 = 8

3 x (-3) = -9

(-1) x 1 = -1

8 + (-9) + (-1) = -2

结果是-2,对应的位置是左上角。

要计算右上角的数,用矩阵A的最上面一行的数乘以矩阵B右侧一列的数,下面是具体算法:

2 x (-5) = -10

3 x 0 = 0

(-1) x 2 = -2

-10 + 0 + (-2) = -12

结果是-12,对应的位置是右上角。

技术分享图片

 

 

 

   6、检查相应的数字是否出现在正确的位置。19在左下角,-34在右-2在左上角,-12在右上角。

 

 

 

技术分享图片

 

------------恢复内容开始------------

创建与组合矩阵

  使用mat函数创建矩阵:matr1 = np.mat("1 2 3;4 5 6;7 8 9")

  使用matrix函数创建矩阵:matr2 = np.matrix([[123],[456],[789]])

  使用bmat函数合成矩阵:np.bmat("arr1 arr2;arr1 arr2")

      In[1]:  import numpy as np    #导入NumPy库

           matr1 = np.mat("1  2  3;4  5  6;7  8  9")    #使用分号隔开数据

           print(matr1)

      Out[1]:  [[1  2  3]

             [4  5  6]

             [7  8  9]]

      In[2]:  matr2 = np.matrix([[1,2,3],[4,5,6],[7,8,9]])

           print()

      Out[2]:  [[1  2  3]

            [4  5  6]

            [7  8  9]]

      In[3]:  arr1 = np.eye(3)  #创建数组1

            print(arr1)  

      Out[3]:  [[1.  0.  0. ]

            [0.  1.  0.]

            [0.  0.  1. ]]

      In[4]:  arr2 = 3 * arr1  #创建数组2

           print(arr2)

      Out[4]:  [[3.  0.  0. ]

            [0.  3.  0. ]

            [0.  0.  3. ]]

      In[5]:  np.bmat("arr1  arr2;"arr1  arr2)  #创建的矩阵

      Out[5]:  [[1.  0.  0.  3.  0.  0. ]

            [0.  1.  0.  0.  3.  0. ]

            [0.  0.  1.  0.  0.  3. ]]

      In[6]:  matr1 = np.bmat("1 2 3;4 5 6;7 8 9")  #创建矩阵

           print(matr1)

      Out[6]:  [[1  2  3]

            [4  5  6]

            [7  8  9]]

  矩阵的运算

  矩阵与数相乘:matrl*3

  矩阵相加减:,atr1+-matr2

  矩阵相乘:matr1*matr2

  矩阵对应元素相乘:np.multiply(matr1,matr2)

  矩阵特有属性:

技术分享图片

 

 

       In[6]:  matr1 = np.mat("1  2  3;4  5  6;7  8  9")  #创建矩阵1

             print(matr1)

      Out[6]:  [[1  2  3]

            [4  5  6]

            [7  8  9]]

      In[7]:  matr2 = matr1*3  #创建矩阵2

           print(matr2)

      Out[7]:  [[3  6  9]

            [12  15  18]

            [21  24  27]]

      In[8]:  print(matr1+matr2)  #矩阵相加

      Out[8]:  [[4  8  12]

            [16  20  24]

            [28  32  36]]

      In[9]:  print(matr1 - matr2)  #矩阵相减

      Out[9]:  [[-2  -4  -6]

            [-8  -10  -12]

            [-14  -16  -18]]

      In[10]:  print(matr1 * matr2)  #矩阵相乘

      Out[10]:  [[90  108  126]

            [198  243  288]

            [306  378  450]]

      In[11]:  print(np.multiply(matr1,matr2))

      Out[11]:  [[3  12  27]

            [48  75  108]

            [147  192  243]]

      In[12]:  print(matr1.T)  #转置

      Out[12]:  [[1  4  7]

            [2  5  8]

            [3  6  9]]

      In[13]:  print(matr1.H)  #共轭转置(实数的共轭就是其本身)

      Out[13]:  [[1  4  7]

            [2  5  8]

            [3  6  9]]

      In[14]:  print(matr1.I)  #逆矩阵

      Out[14]:  [[-4.50359963e+15  9.00719925e+15  -4.05359963e+15]

            [9.00719925e+15  -1.80143985e+16  9.00719925e+15]

            [-4.50359963e+15  9.00719925e+15  -4.50359963e+15]]

      In[15]:  print(matr1.A)  #返回二维数组的视图

      Out[15]:  [[1  2  3]

            [4  5  6]

            [7  8  9]]

 

 

ufunc函数

  全称通用函数,是一种能够对数组中所有元素进行操作的函数。

  四则运算:加(+)、减(-)、乘(*)、除(/)、幂(**)。数组间的四则运算表示对每个数组中的元素分别进行四则运算,所以形状必须相同。

  比较运算:>、<、==、<=、!=。比较运算返回的结果是一个布尔数组,每个元素为每个数组对应元素的比较结果。

  逻辑运算:np.any函数表示逻辑"or",np.all函数表示逻辑"and"。运算结果返回布尔值。

      In[16]:  x = np.array[1,2,3]

           y = np.array[4,5,6]

           print(x + y)  #数组相加

      Out[16]:  [5  7  9]

      In[17]:  print(x - y)  #数组相减

      Out[17]:  [-3  -3  -3]

      In[18]:  print(x * y)  #数组相乘

      Out[18]:  [4  10  18]

      In[19]:  print(x / y)  #数组相除

      Out[19]:  [0.25  0.4  0.5]

      In[20]:  print(x ** y)  #数组幂运算

      Out[20]:  [1  32  729]

 

  数组的比较运算:

      In[21]:  x = np.array([1,3,5])

           y = np.array([2,3,4])

           print(x < y)

      Out[21]:  [True  False  False]

      In[22]:  print(x > y)

      Out[22]:  [False  False  True]

      In[23]:  print(x == y)

      Out[23]:  [False  True  False]

      In[24]:  print(x >= y)

      Out[24]:  [False  True  True]

      In[25]:  print(x <= y)

      Out[25]:  [True  True  False]

      In[26]:  print(x != y)

      Out[26]:  [True  False  True]

      In[27]:  print(np.all(x  ==  y))  #np.all( )表示逻辑and

      Out[27]:  False

      In[28]:  print(np.any(x == y))  #np.any( )表示逻辑or

      Out[28]:  True

 

  ufunc函数的广播机制:

  广播是指不同形状的数组之间执行算数运算的方式。需要遵循4个原则。

  *  让所有输入数组都向其中shape最长的数组看齐,shape中不足的部分都通过在前面加1补齐。

  *  输出数组的shape是输入数组shape的各个轴上的最大值。

  *  如果输入数组的某个轴和输出数组的对应轴的长度相同或者其长度为1时,这个数组能够用来计算,否则出错。

  *  当输入数组的某个轴的长度为1时,沿着此轴运算时都用此轴上的第一组值。

一维数组的广播机制:

      In[29]:  arr1 = np.array([[0,0,0],[1,1,1],[2,2,2],[3,3,3]])

           print(arr1)

      Out[29]:  [[0  0  0]

            [1  1  1]

            [2  2  2]

            [3  3  3]]

      In[30]:  print(arr1.shape)

      Out[30]:  (4, 3)

      In[31]:  arr2 = np.array([1,2,3])

           print(arr2)

      Out[31]:  [1  2  3]

      In[32]:  print(arr2.shape)

      Out[32]:  (3,)

      In[33]:  print(arr1 + arr2)

      Out[33]:  [[1  2  3]

            [2  3  4]

            [3  4  5]

            [4  5  6]]

 

 技术分享图片

技术分享图片

 

 

 

 

 

二维数组的广播机制:

      In[34]:  arr1 = np.array([0,0,0],[1,1,1],[2,2,2],[3,3,3])

           print(arr1)

      Out[34]:  [[0  0  0]

            [1  1  1]

            [2  2  2]

            [3  3  3]]

      In[35]:  print(arr1.shape)

      Out[35]:  (4,3)

      In[36]:  arr2 = np.array([1,2,3,4]).reshape((4,1))

           print(arr2)

      Out[36]:  [[1]

            [2]

            [3]

            [4]]

      In[37]:  print(arr2.shape)

      Out[37]:  (4, 1)

      In[38]:  print(arr1 + arr2)

      Out[38]:  [[1  1  1]

            [3  3  3]

            [5  5  5]

            [7  7  7]]

技术分享图片

 

 

 技术分享图片

 

 

 技术分享图片

 

 

 

 技术分享图片

 

 

 矩阵乘法 

  1、确认矩阵是否可以相乘。只有第一个矩阵的的个数等于第二个矩阵的的个数,这样的两个矩阵才能相乘。图示的两个矩阵可以相乘,因为第一个矩阵,矩阵A有3列,而第二个矩阵,矩阵B有3行。

技术分享图片

 

 

 

  2、计算结果矩阵的行列数。画一个空白的矩阵,来代表矩阵乘法的结果。矩阵A和矩阵B相乘得到的矩阵,与矩阵A有相同的行数,与矩阵B有相同的列数

矩阵A有2行,所以结果矩阵也有2行。矩阵B有2列,所以结果矩阵也有2列。最终的结果矩阵就有2行2列。

技术分享图片

 

 

 

  3、计算第一个“点”。要计算矩阵中的第一个“点”,你需要用第一个矩阵第一行的第一个数乘以第二个矩阵第一列的第一个数,第一行的第二个数乘以第一列的第二个数,第一行的第三个数乘以第一列的第三个数,然后将这三个结果加到一起,得到第一个点。先来计算一下结果矩阵中第二行第二列的数,下面是算法:

6 x -5 = -30

1 x 0 = 0

2 x 2 = -4

-30 + 0 + (-4) = -34

结果是-34,对应了矩阵最右下角的位置。

在你计算矩阵乘法时,结果所处的行列位置要满足,行和第一个矩阵的行相同,列和第二个矩阵的列相同。比如,你用矩阵A最下面一行的数乘以矩阵B最右一列的数,得到的结果是-34,所以-34应该是结果矩阵中最右下角的一个数。

 技术分享图片

 

 

 

  4、计算第二个“点”。比如计算最左下角的数,你需要用第一个矩阵最下面一行的数乘以第二个矩阵最左列的数,然后再把结果相加。具体计算方法和上面一样。

6 x 4 = 24

1 x (-3) = -3

(-2) x 1 = -2

24 + (-3) + (-2) = 19

结果是-19,对应矩阵左下角的位置。

技术分享图片

 

 

 

  5、在计算剩下的两个“点”。要计算左上角的数,用矩阵A的最上面一行的数乘以矩阵B左侧一列的数,下面是具体算法:

2 x 4 = 8

3 x (-3) = -9

(-1) x 1 = -1

8 + (-9) + (-1) = -2

结果是-2,对应的位置是左上角。

要计算右上角的数,用矩阵A的最上面一行的数乘以矩阵B右侧一列的数,下面是具体算法:

2 x (-5) = -10

3 x 0 = 0

(-1) x 2 = -2

-10 + 0 + (-2) = -12

结果是-12,对应的位置是右上角。

技术分享图片

 

 

 

   6、检查相应的数字是否出现在正确的位置。19在左下角,-34在右-2在左上角,-12在右上角。

 

NumPy矩阵与通用函数

原文:https://www.cnblogs.com/XiaMengJie/p/12431405.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!