题目链接:uva 12338 - Anti-Rhyme Pairs
题目大意:给定若干个字符串,每次询问两个字符串的最长公共前缀。
解题思路:本来应该将每个字符串连接起来做后缀数组,但其实可以直接把一个字符串看成是一个字符,然后排序了就对应是SA数组,然后处理height即可。然后根据后缀数组的性质,字符串i和j的最长公共前缀长度即为rank[i]+1~rank[j]之间height的最小值。特判i=j的情况。
#include <cstdio>
#include <cstring>
#include <string>
#include <vector>
#include <iostream>
#include <algorithm>
using namespace std;
typedef pair<string, int> pii;
const int maxn = 1e5+5;
int Rank[maxn];
int dp[maxn][20];
vector<pii> g;
vector<int> height;
void rmq_init(const vector<int>& A) {
int n = A.size();
for (int i = 0; i < n; i++)
dp[i][0] = A[i];
for (int j = 1; (1<<j) <= n; j++) {
for (int i = 0; i + (1<<j) - 1 < n; i++)
dp[i][j] = min(dp[i][j-1], dp[i+(1<<(j-1))][j-1]);
}
}
int rmq_query (int l, int r) {
if (l == r)
return g[l].first.length();
if (l > r)
swap(l, r);
l++;
int k = 0;
while ((1<<(k+1)) <= r - l + 1)
k++;
return min(dp[l][k], dp[r - (1<<k) + 1][k]);
}
void solve () {
sort(g.begin(), g.end());
for (int i = 0; i < g.size(); i++)
Rank[g[i].second] = i;
height.clear();
height.push_back(0);
for (int i = 1; i < g.size(); i++) {
int n = min(g[i].first.length(), g[i-1].first.length());;
int j;
for (j = 0; j < n; j++)
if (g[i].first[j] != g[i-1].first[j])
break;
height.push_back(j);
}
rmq_init(height);
}
int main () {
int cas, n, l, r;
string s;
cin >> cas;
for (int kcas = 1; kcas <= cas; kcas++) {
cin >> n;
g.clear();
for (int i = 0; i < n; i++) {
cin >> s;
g.push_back(make_pair(s, i));
}
solve();
cout << "Case " << kcas << ":" << endl;
cin >> n;
while (n--) {
cin >> l >> r;
cout << rmq_query(Rank[l-1], Rank[r-1]) << endl;
}
}
return 0;
}
uva 12338 - Anti-Rhyme Pairs(后缀数组+RMQ)
原文:http://blog.csdn.net/keshuai19940722/article/details/39013777