曼哈顿最小树。
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<cstdlib>
#include<climits>
#include<stack>
#include<vector>
#include<queue>
#include<set>
#include<bitset>
#include<map>
//#include<regex>
#include<cstdio>
#pragma GCC optimize(2)
#define up(i,a,b) for(int i=a;i<b;i++)
#define dw(i,a,b) for(int i=a;i>b;i--)
#define upd(i,a,b) for(int i=a;i<=b;i++)
#define dwd(i,a,b) for(int i=a;i>=b;i--)
//#define local
typedef long long ll;
typedef unsigned long long ull;
const double esp = 1e-6;
const double pi = acos(-1.0);
const int INF = 0x3f3f3f3f;
const int inf = 1e9;
using namespace std;
ll read()
{
char ch = getchar(); ll x = 0, f = 1;
while (ch<'0' || ch>'9') { if (ch == '-')f = -1; ch = getchar(); }
while (ch >= '0' && ch <= '9') { x = x * 10 + ch - '0'; ch = getchar(); }
return x * f;
}
typedef pair<int, int> pir;
#define lson l,mid,root<<1
#define rson mid+1,r,root<<1|1
#define lrt root<<1
#define rrt root<<1|1
const int N = 10010;
struct eg {
int u, v, wi;
bool operator<(const eg a) {
return wi < a.wi;
}
}edge[5 * N];
int eg_cnt = 0;
void addedge(int u, int v, int wi)
{
edge[eg_cnt].u = u; edge[eg_cnt].v = v; edge[eg_cnt].wi = wi; eg_cnt++;
}
struct uni {
int height[N], fa[N];
void init(int maxn)
{
upd(i, 0, maxn)
{
height[i] = 1;
fa[i] = i;
}
}
int find_pr(int x)
{
return x == fa[x] ? x : fa[x] = find_pr(fa[x]);
}
void unit(int x, int y)
{
x = find_pr(x);
y = find_pr(y);
if (x == y)return;
if (height[x] < height[y])swap(x, y);
fa[y] = x;
height[x] += height[y];
}
bool same(int x, int y)
{
return find_pr(x) == find_pr(y);
}
}un;
struct dij{
int a, b, id;
bool operator<(const dij tp)const
{
return a == tp.a ? b < tp.b : a < tp.a;
}
}now[N];
struct bit {
int minn[N];
int id[N];
int len;
void init(int len)
{
this->len = len;
memset(bit::minn, INF, sizeof(bit::minn));
memset(bit::id, 0, sizeof(bit::id));
}
int lowbit(int i)
{
return i & (-i);
}
void update(int pos, int val,int id)
{
while (pos)
{
if (minn[pos] > val)
{
bit::minn[pos] = val;
bit::id[pos] = id;
}
pos -= bit::lowbit(pos);
}
}
int query(int pos)
{
int temp_min = INF;
int temp_pos = 0;
while (pos <= len)
{
if (temp_min > minn[pos])
{
temp_min = minn[pos];
temp_pos = id[pos];
}
pos += bit::lowbit(pos);
}
return temp_pos;
}
}BIT;
int n, k;
vector<int>vec;
int distemp[N];
int dist(int x, int y)
{
return abs(now[x].b - now[y].b) + abs(now[x].a - now[y].a);
}
void cal()
{
upd(i, 1, n)
{
distemp[i] = now[i].b - now[i].a;
vec.push_back(distemp[i]);
}
sort(vec.begin(), vec.end());
vec.erase(unique(vec.begin(), vec.end()), vec.end());
BIT.init(vec.size());
dwd(i, n, 1)
{
int cal_pos = lower_bound(vec.begin(), vec.end(), distemp[i]) - vec.begin() + 1;
int f_pos = BIT.query(cal_pos);
if (f_pos != 0)
addedge(now[i].id, now[f_pos].id, dist(i, f_pos));
BIT.update(cal_pos, now[i].a + now[i].b, i);
}
}
void kruskal()
{
k = n - k;
int kru_tot = 0;
sort(edge, edge + eg_cnt);
vector<int>ans;
up(i, 0, eg_cnt)
{
if (!un.same(edge[i].u, edge[i].v))
{
kru_tot++;
un.unit(edge[i].u, edge[i].v);
if (kru_tot == k) { printf("%d\n", edge[i].wi); return; }
//ans.push_back(edge[i].wi);
}
}
//for (auto p : ans)printf("%d ", p);
//printf("%d\n", ans[n - k]);
}
int main()
{
n = read(), k = read();
un.init(n);
upd(i, 1, n)
{
now[i].a = read(); now[i].b = read(); now[i].id = i;
}
up(j, 0, 4)
{
if (j == 1||j==3)
{
upd(i, 1, n)swap(now[i].a, now[i].b);
}
else if (j == 2)
{
upd(i, 1, n)now[i].a = -now[i].a;
}
sort(now + 1, now + n + 1);
cal();
}
kruskal();
return 0;
}
原文:https://www.cnblogs.com/LORDXX/p/12506415.html