将 RCN 中下面 3 个独立模块整合在一起,减少计算量:
CNN:提取图像特征
SVM:目标分类识别
Regression 模型:定位
不对每个候选区域独立通过 CN 提取特征,将整个图像通过 CNN 提取特征,然后从 CNN 的特征图中根据 Selection Search 的候选区域通过 Rol Pooling 层提取区域特征
Faster R-CNN训练步骤:
预训练一个用于分类的CNN
使用CNN的特征图作为输出,端到端的fine-tune RPN(region proposal network)+CNN. 当ioU>0.7为正样本,ioU《0.3为负样本
固定RPN的权值,使用氮气啊的RPN训练一个Fast R-CNN
固定CNN,Fast R-CNN的权值,训练RPN
固定CNN, RPN,训练Fast R-CNN的权值
重复步骤4和5知道满意为止
Faster R-CNN可以简单地看做“区域生成网络RPNs + Fast R-CNN”的系统,用区域生成网络代替FastR-CNN中的Selective Search方法。Faster R-CNN这篇论文着重解决了这个系统中的三个问题:
在整个Faster R-CNN算法中,有三种尺度:
原图尺度:原始输入的大小。不受任何限制,不影响性能。
网络输入尺度:输入特征检测网络的大小,在训练时设置,源码中为224*224。
https://blog.csdn.net/sinat_26745777/article/details/104956858
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
原文:https://www.cnblogs.com/TuringEmmy/p/12521179.html