引擎 特性
MYISAM 不支持外键,表锁,插入数据时,锁定整个表,查表总行数时,不需要全表扫描
INNODB 支持外键,行锁,查表总行数时,全表扫描
索引 区别
Hash hash索引,等值查询效率高,不能排序,不能进行范围查询
B+ 数据有序,范围查询
索引 区别
聚集索引 数据按索引顺序存储,中子结点存储真实的物理数据
非聚集索引 存储指向真正数据行的指针
InnoDB的数据文件本身就是索引文件。而MyISAM的索引和数据是分开的。
二是辅助索引的区别:InnoDB的辅助索引data域存储相应记录主
树 区别
红黑树 增加,删除,红黑树会进行频繁的调整,来保证红黑树的性质,浪费时间
B树也就是B-树 B树,查询性能不稳定,查询结果高度不致,每个结点保存指向真实数据的指针,相比B+树每一层每屋存储的元素更多,显得更高一点。
B+树 B+树相比较于另外两种树,显得更矮更宽,查询层次更浅
一个m阶的B+树具有如下几个特征:
1.有k个子树的中间节点包含有k个元素(B树中是k-1个元素),每个元素不保存数据,只用来索引,所有数据都保存在叶子节点。
2.所有的叶子结点中包含了全部元素的信息,及指向含这些元素记录的指针,且叶子结点本身依关键字的大小自小而大顺序链接。
3.所有的中间节点元素都同时存在于子节点,在子节点元素中是最大(或最小)元素
索引查找过程中就要产生磁盘I/O消耗,主要看IO次数,和磁盘存取原理有关。
根据B-Tree的定义,可知检索一次最多需要访问h个节点。数据库系统的设计者巧妙利用了磁盘预读原理,
将一个节点的大小设为等于一个页,这样每个节点只需要一次I/O就可以完全载入
局部性原理与磁盘预读
1.sql尽量使用索引,而且查询要走索引
2.对sql语句优化
子查询变成left join
limit 分布优化,先利用ID定位,再分页
or条件优化,多个or条件可以用union all对结果进行合并(union all结果可能重复)
不必要的排序
where代替having,having 检索完所有记录,才进行过滤
避免嵌套查询
对多个字段进行等值查询时,联合索引
索引类型 概念
普通索引 最基本的索引,没有任何限制
唯一索引 与"普通索引"类似,不同的就是:索引列的值必须唯一,但允许有空值。
主键索引 它是一种特殊的唯一索引,不允许有空值。
全文索引 针对较大的数据,生成全文索引很耗时好空间。
组合索引 为了更多的提高mysql效率可建立组合索引,遵循”最左前缀“原则
失效条件
条件是or,如果还想让or条件生效,给or每个字段加个索引
like查询,以%开发
内部函数
对索引列进行计算
is null不会用,is not null 会用
类型 使用场景
varchar 字符长度经常变的
char 用字符长度固定的
1NF 属性不可分
2NF 非主键属性,完全依赖于主键属性
3NF 非主键属性无传递依赖
关系型数据库
优点
缺点
非关系型数据库
优点
缺点
锁 概念
乐观锁 自己实现,通过版本号
悲观锁 共享锁,多个事务,只能读不能写,加 lock in share mode
排它锁 一个事务,只能写,for update
行锁 作用于数据行
表锁 作于用表
找到进程号,kill 进程
最左匹配原则是针对索引的
举例来说:两个字段(name,age)建立联合索引,如果where age=12这样的话,是没有利用到索引的,
这里我们可以简单的理解为先是对name字段的值排序,然后对age的数据排序,如果直接查age的话,这时就没有利用到索引了,
查询条件where name=‘xxx’ and age=xx 这时的话,就利用到索引了,再来思考下where age=xx and name=’xxx‘ 这个sql会利用索引吗,
按照正常的原则来讲是不会利用到的,但是优化器会进行优化,把位置交换下。这个sql也能利用到索引了
参考https://www.cnblogs.com/xiaofengwang/p/11246552.html
原文:https://www.cnblogs.com/xiaokang01/p/12509344.html