首页 > Web开发 > 详细

【猫狗数据集】可视化resnet18的输出

时间:2020-03-21 15:57:51      阅读:386      评论:0      收藏:0      [点我收藏+]

数据集下载地址:

链接:https://pan.baidu.com/s/1l1AnBgkAAEhh0vI5_loWKw
提取码:2xq4

创建数据集:https://www.cnblogs.com/xiximayou/p/12398285.html

读取数据集:https://www.cnblogs.com/xiximayou/p/12422827.html

进行训练:https://www.cnblogs.com/xiximayou/p/12448300.html

保存模型并继续进行训练:https://www.cnblogs.com/xiximayou/p/12452624.html

加载保存的模型并测试:https://www.cnblogs.com/xiximayou/p/12459499.html

划分验证集并边训练边验证:https://www.cnblogs.com/xiximayou/p/12464738.html

使用学习率衰减策略并边训练边测试:https://www.cnblogs.com/xiximayou/p/12468010.html

利用tensorboard可视化训练和测试过程:https://www.cnblogs.com/xiximayou/p/12482573.html

从命令行接收参数:https://www.cnblogs.com/xiximayou/p/12488662.html

使用top1和top5准确率来衡量模型:https://www.cnblogs.com/xiximayou/p/12489069.html

使用预训练的resnet18模型:https://www.cnblogs.com/xiximayou/p/12504579.html

计算数据集的平均值和方差:https://www.cnblogs.com/xiximayou/p/12507149.html

读取数据集的第二种方式:https://www.cnblogs.com/xiximayou/p/12516735.html

对一张张图像进行预测(而不是测试集):https://www.cnblogs.com/xiximayou/p/12522690.html

epoch、batchsize、step之间的关系:https://www.cnblogs.com/xiximayou/p/12405485.html

 

最后读取训练好的模型,可视化特征图,至此猫狗数据集系列就完结了,后面准备着手pyorch-ssd训练自己的数据集(比如是否口罩检测)。

直接看代码吧:visual.py

import cv2
import time
import os
import matplotlib.pyplot as plt
import torch
from torch import nn
import torchvision.models as models
import torchvision.transforms as transforms
import numpy as np
import torchvision
import torch.nn as nn
 
savepath=rresults
if not os.path.exists(savepath):
    os.mkdir(savepath)
 
def load_model():
  model=torchvision.models.resnet18(pretrained=False)
  model.fc = nn.Linear(model.fc.in_features,2,bias=False)
  save_path="/content/drive/My Drive/colab notebooks/output/resnet18_best.t7" 
  checkpoint = torch.load(save_path,map_location=lambda storage, loc: storage)
  model.load_state_dict(checkpoint[model])
  return model 

def draw_features(width,height,x,savename):
    tic=time.time()
    fig = plt.figure(figsize=(16, 16))
    fig.subplots_adjust(left=0.05, right=0.95, bottom=0.05, top=0.95, wspace=0.05, hspace=0.05)
    for i in range(width*height):
        plt.subplot(height,width, i + 1)
        plt.axis(off)
        img = x[0, i, :, :]
        pmin = np.min(img)
        pmax = np.max(img)
        img = ((img - pmin) / (pmax - pmin + 0.000001))*255  #float在[0,1]之间,转换成0-255
        img=img.astype(np.uint8)  #转成unit8
        img=cv2.applyColorMap(img, cv2.COLORMAP_JET) #生成heat map
        img = img[:, :, ::-1]#注意cv2(BGR)和matplotlib(RGB)通道是相反的
        plt.imshow(img)
        #print("{}/{}".format(i+1,width*height))
    fig.savefig(savename, dpi=100)
    fig.clf()
    plt.close()
    print("time:{}".format(time.time()-tic))
 
 
class ft_net(nn.Module):
 
    def __init__(self):
        super(ft_net, self).__init__()
        model=load_model()
        self.model = model
 
    def forward(self, x):
        if True: # draw features or not
            x = self.model.conv1(x)
            draw_features(8,8,x.cpu().numpy(),"{}/f1_conv1.png".format(savepath))
 
            x = self.model.bn1(x)
            draw_features(8, 8, x.cpu().numpy(),"{}/f2_bn1.png".format(savepath))
 
            x = self.model.relu(x)
            draw_features(8, 8, x.cpu().numpy(), "{}/f3_relu.png".format(savepath))
 
            x = self.model.maxpool(x)
            draw_features(8, 8, x.cpu().numpy(), "{}/f4_maxpool.png".format(savepath))
 
            x = self.model.layer1(x)
            draw_features(8, 8, x.cpu().numpy(), "{}/f5_layer1.png".format(savepath))
 
            x = self.model.layer2(x)
            draw_features(8, 16, x.cpu().numpy(), "{}/f6_layer2.png".format(savepath))
 
            x = self.model.layer3(x)
            draw_features(16, 16, x.cpu().numpy(), "{}/f7_layer3.png".format(savepath))
 
            x = self.model.layer4(x)
            draw_features(16, 32, x.cpu().numpy(), "{}/f8_layer4.png".format(savepath))
            #draw_features(16, 32, x.cpu().numpy()[:, 0:1024, :, :], "{}/f8_layer4_1.png".format(savepath))
            #draw_features(16, 32, x.cpu().numpy()[:, 1024:2048, :, :], "{}/f8_layer4_2.png".format(savepath))
 
            x = self.model.avgpool(x)
            #plt.plot(np.linspace(1, 2048, 2048), x.cpu().numpy()[0, :, 0, 0])
            plt.plot(np.linspace(1, 512, 512), x.cpu().numpy()[0, :, 0, 0])
            plt.savefig("{}/f9_avgpool.png".format(savepath))
            plt.clf()
            plt.close()
 
            x = x.view(x.size(0), -1)
            x = self.model.fc(x)
            #plt.plot(np.linspace(1, 1000, 1000), x.cpu().numpy()[0, :])
            plt.plot(np.linspace(1, 2, 2), x.cpu().numpy()[0, :])
            plt.savefig("{}/f10_fc.png".format(savepath))
            plt.clf()
            plt.close()
        else :
            x = self.model.conv1(x)
            x = self.model.bn1(x)
            x = self.model.relu(x)
            x = self.model.maxpool(x)
            x = self.model.layer1(x)
            x = self.model.layer2(x)
            x = self.model.layer3(x)
            x = self.model.layer4(x)
            x = self.model.avgpool(x)
            x = x.view(x.size(0), -1)
            x = self.model.fc(x)
 
        return x
 
 
model=ft_net()
 
# pretrained_dict = resnet50.state_dict()
# pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
# model_dict.update(pretrained_dict)
# net.load_state_dict(model_dict)
model.eval()
img=cv2.imread(/content/drive/My Drive/colab notebooks/image/cat7.jpg)
img=cv2.resize(img,(224,224))
img=cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
transform = transforms.Compose(
    [transforms.ToTensor(),
     transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))])
img=transform(img)
img=img.unsqueeze(0)
 
with torch.no_grad():
    start=time.time()
    out=model(img)
    print("total time:{}".format(time.time()-start))
    result=out.cpu().numpy()
    # ind=np.argmax(out.cpu().numpy())
    ind=np.argsort(result,axis=1)
    """
    for i in range(5):
        print("predict:top {} = cls {} : score {}".format(i+1,ind[0,1000-i-1],result[0,1000-i-1]))
    """
    for i in range(2):
        print("predict:top {} = cls {} : score {}".format(i+1,ind[0,2-i-1],result[0,2-i-1]))
    print("done")

说明:需要注意的地方

  • 在draw_features()中的前两个参数的乘积必须为该层输出的通道数目的大小。
  • 在GPU上训练的模型要转换成CPU模式。
  • 输入的图像转换成测试的格式:图像大小、维度[batchsize,C,H,W]
  • 要注意我们的类别是两类:猫和狗

运行:

技术分享图片

输出文件夹:

技术分享图片

原始图片:

技术分享图片

查看每一个文件中的图像:只截取部分

f1_conv1.png 

技术分享图片

f2_bn1.png

技术分享图片

f3_relu.png 

技术分享图片

f4_maxpool.png

技术分享图片

f5_layer1.png

技术分享图片

f6_layer2.png

技术分享图片

f7_layer3.png

技术分享图片

f8_layer4.png

技术分享图片

f9_avgpool.png

技术分享图片

f10_fc.png

技术分享图片

横轴是类别编号,纵轴是评分。最后一个图咋好像不太对劲。。

参考了:https://blog.csdn.net/weixin_40500230/article/details/93845890

其实pytorch有一个可视化库很全面,奈何整了半天没整成功,有机会再试试了。 

https://github.com/utkuozbulak/pytorch-cnn-visualizations/

【猫狗数据集】可视化resnet18的输出

原文:https://www.cnblogs.com/xiximayou/p/12539378.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!