def lstm_cell_forward(xt, a_prev, c_prev, parameters): """ Implement a single forward step of the LSTM-cell as described in Figure (4) ? Arguments: xt -- your input data at timestep "t", numpy array of shape (n_x, m). a_prev -- Hidden state at timestep "t-1", numpy array of shape (n_a, m) c_prev -- Memory state at timestep "t-1", numpy array of shape (n_a, m) parameters -- python dictionary containing: Wf -- Weight matrix of the forget gate, numpy array of shape (n_a, n_a + n_x) bf -- Bias of the forget gate, numpy array of shape (n_a, 1) Wi -- Weight matrix of the update gate, numpy array of shape (n_a, n_a + n_x) ? bi -- Bias of the update gate, numpy array of shape (n_a, 1) Wc -- Weight matrix of the first "tanh", numpy array of shape (n_a, n_a + n_x) bc -- Bias of the first "tanh", numpy array of shape (n_a, 1) Wo -- Weight matrix of the output gate, numpy array of shape (n_a, n_a + n_x) bo -- Bias of the output gate, numpy array of shape (n_a, 1) Wy -- Weight matrix relating the hidden-state to the output, numpy array of shape (n_y, n_a) by -- Bias relating the hidden-state to the output, numpy array of shape (n_y, 1) ? Returns: a_next -- next hidden state, of shape (n_a, m) c_next -- next memory state, of shape (n_a, m) yt_pred -- prediction at timestep "t", numpy array of shape (n_y, m) cache -- tuple of values needed for the backward pass, contains (a_next, c_next, a_prev, c_prev, xt, parameters) ? Note: ft/it/ot stand for the forget/update/output gates, cct stands for the candidate value (c tilde), c stands for the cell state (memory) """ # 从 "parameters" 中取出参数。 Wf = parameters["Wf"] # 遗忘门权重 bf = parameters["bf"] Wi = parameters["Wi"] # 更新门权重 (注意变量名下标是i不是u哦) bi = parameters["bi"] # (notice the variable name) Wc = parameters["Wc"] # 候选值权重 bc = parameters["bc"] Wo = parameters["Wo"] # 输出门权重 bo = parameters["bo"] Wy = parameters["Wy"] # 预测值权重 by = parameters["by"] # 连接 a_prev 和 xt concat = np.concatenate((a_prev, xt), axis=0) # 等价于下面代码 # 从 xt 和 Wy 中取出维度 # n_x, m = xt.shape # n_y, n_a = Wy.shape # concat = np.zeros((n_a + n_x, m)) # concat[: n_a, :] = a_prev # concat[n_a :, :] = xt # 计算 ft (遗忘门), it (更新门)的值 # cct (候选值), c_next (单元状态), # ot (输出门), a_next (隐藏单元) ft = sigmoid(np.dot(Wf, concat) + bf) # 遗忘门 it = sigmoid(np.dot(Wi, concat) + bi) # 更新门 cct = np.tanh(np.dot(Wc, concat) + bc) # 候选值 c_next = ft * c_prev + it * cct # 单元状态 ot = sigmoid(np.dot(Wo, concat) + bo) # 输出门 a_next = ot * np.tanh(c_next) # 隐藏状态 # 计算LSTM的预测值 yt_pred = softmax(np.dot(Wy, a_next) + by) # 用于反向传播的缓存 cache = (a_next, c_next, a_prev, c_prev, ft, it, cct, ot, xt, parameters) ? return a_next, c_next, yt_pred, cache
def lstm_forward(x, a0, parameters): """ Implement the forward propagation of the recurrent neural network using an LSTM-cell described in Figure (4). ? Arguments: x -- Input data for every time-step, of shape (n_x, m, T_x). a0 -- Initial hidden state, of shape (n_a, m) parameters -- python dictionary containing: Wf -- Weight matrix of the forget gate, numpy array of shape (n_a, n_a + n_x) bf -- Bias of the forget gate, numpy array of shape (n_a, 1) Wi -- Weight matrix of the update gate, numpy array of shape (n_a, n_a + n_x) bi -- Bias of the update gate, numpy array of shape (n_a, 1) Wc -- Weight matrix of the first "tanh", numpy array of shape (n_a, n_a + n_x) bc -- Bias of the first "tanh", numpy array of shape (n_a, 1) Wo -- Weight matrix of the output gate, numpy array of shape (n_a, n_a + n_x) bo -- Bias of the output gate, numpy array of shape (n_a, 1) Wy -- Weight matrix relating the hidden-state to the output, numpy array of shape (n_y, n_a) by -- Bias relating the hidden-state to the output, numpy array of shape (n_y, 1) ? Returns: a -- Hidden states for every time-step, numpy array of shape (n_a, m, T_x) y -- Predictions for every time-step, numpy array of shape (n_y, m, T_x) c -- The value of the cell state, numpy array of shape (n_a, m, T_x) caches -- tuple of values needed for the backward pass, contains (list of all the caches, x) """ ? # 初始化 "caches", 用来存储每个时间步长的cache值的 caches = [] Wy = parameters[‘Wy‘] # 从 x 和 parameters[‘Wy‘] 的shape中获取纬度值 n_x, m, T_x = x.shape n_y, n_a = Wy.shape ? # 初始化 "a", "c" and "y" a = np.zeros((n_a, m, T_x)) c = np.zeros((n_a, m, T_x)) y = np.zeros((n_y, m, T_x)) ? # 初始化 a_next and c_next a_next = a0 c_next = np.zeros(a_next.shape) ? # loop over all time-steps for t in range(T_x): # 从3维张量x中获取t时间步长的2维张量xt xt = x[:, :, t] # 更新下一个时间步长的隐藏状态, 下一个单元状态, 计算预测值 a_next, c_next, yt, cache = lstm_cell_forward(xt, a_next, c_next, parameters) # 把下一个时间步长长的隐藏状态保存起来 a[:,:,t] = a_next # 把下一个时间步长长的单元状态保存起来 c[:,:,t] = c_next # 把预测值保存起来 y[:,:,t] = yt # 保存缓存值 caches.append(cache) # 用于向后传播 caches = (caches, x) ? return a, y, c, caches
手把手构建LSTM的向前传播(Building a LSTM step by step)
原文:https://www.cnblogs.com/siguamatrix/p/12543113.html