首页 > 编程语言 > 详细

Python学习————迭代器与生成器

时间:2020-03-24 21:37:06      阅读:63      评论:0      收藏:0      [点我收藏+]

一:什么是迭代器

迭代器指的是迭代取值的工具,迭代是一个重复的过程,每次重复都是基于上一次的结果而继续的,单纯的重复并不是迭代

二:为何要有迭代器

迭代器是用来迭代取值的工具,而涉及到把多个值循环取出来的类型

有:列表、字符串、元组、字典、集合、打开文件

l=[‘egon‘,‘liu‘,‘alex‘]
i=0
while i < len(l):
    print(l[i])
    i+=1

上述迭代取值的方式只适用于有索引的数据类型:列表、字符串、元组

为了解决基于索引迭代器取值的局限性,python必须提供一种能够不依赖于索引的取值方式,这就是迭代器

三:如何用迭代器

1.可迭代的对象:但凡内置有__iter__方法的都称之为可迭代的对象

s1=‘‘
# s1.__iter__()

l=[]
# l.__iter__()

t=(1,)
# t.__iter__()

d={‘a‘:1}
# d.__iter__()

set1={1,2,3}
# set1.__iter__()

with open(‘a.txt‘,mode=‘w‘) as f:
    # f.__iter__()
    pass

2.调用可迭代对象下的__iter__方法会将其转换成迭代器对象

d={‘a‘:1,‘b‘:2,‘c‘:3}
d_iterator=d.__iter__()
# print(d_iterator)

# print(d_iterator.__next__())
# print(d_iterator.__next__())
# print(d_iterator.__next__())
# print(d_iterator.__next__()) # 抛出异常StopIteration
while True:
    try:
        print(d_iterator.__next__())
    except StopIteration:
        break

print(‘====>>>>>>‘) # 在一个迭代器取值取干净的情况下,再对其取值娶不到
d_iterator=d.__iter__()
while True:
    try:
        print(d_iterator.__next__())
    except StopIteration:
        break


l=[1,2,3,4,5]
l_iterator=l.__iter__()

while True:
    try:
        print(l_iterator.__next__())
    except StopIteration:
        break

3.可迭代对象与迭代器对象详解

① 可迭代对象

("可以转换成迭代器的对象"):内置有__iter__方法对象
 可迭代对象.__iter__(): 得到迭代器对象

② 迭代器对象

内置有__next__方法并且内置有__iter__方法的对象
迭代器对象.__next__():得到迭代器的下一个值
迭代器对象.__iter__():得到迭代器的本身,说白了调了跟没调一个样子
dic={‘a‘:1,‘b‘:2,‘c‘:3}

dic_iterator=dic.__iter__()
print(dic_iterator is dic_iterator.__iter__().__iter__().__iter__())

4.可迭代对象:字符串、列表、元组、字典、集合、文件对象

迭代器对象:文件对象

s1=‘‘
s1.__iter__()

l=[]
l.__iter__()

t=(1,)
t.__iter__()


d={‘a‘:1}
d.__iter__()

set1={1,2,3}
set1.__iter__()


with open(‘a.txt‘,mode=‘w‘) as f:
    f.__iter__()
    f.__next__()

5.for循环的工作原理:for循环可以称之为叫迭代器循环

# 1.d.__iter__()得到一个迭代器对象
# 2.迭代器对象.__next__()拿到一个返回值,然后将该返回值赋值给k
# 3.循环往复步骤2,直到抛出StopIteration异常for循环会捕捉异常然后结束循环

d={‘a‘:1,‘b‘:2,‘c‘:3}

for k in d:
    print(k)
    
with open(‘a.txt‘,mode=‘rt‘,encoding=‘utf-8‘) as f:
    for line in f: # f.__iter__()
        print(line)
        
list(‘hello‘) #原理同for循环

四:迭代器优缺点总结

缺点

1.为序列和非序列类型提供了一种统一的迭代取值方式

2.惰性计算:迭代器对象表示的是一个数据流,可以只在需要时才去调用next来计算出一个值,就迭代器本身来说,同一时刻在内存中只有一个值,因而可以存放无限大的数据流,而对于其他容器类型,如列表,需要把所有的元素都存放于内存中,受内存大小的限制,可以存放的值的个数是有限的

缺点

1.除非取尽,否则无法获取迭代器的长度

2.只能取下一个值,不能回到开始,更像是‘一次性的’,迭代器产生后的唯一目标就是重复执行next方法直到值取尽,否则就会停留在某个位置,等待下一次调用next;若是要再次迭代同个对象,你只能重新调用iter方法去创建一个新的迭代器对象,如果有两个或者多个循环使用同一个迭代器,必然只会有一个循环能取到值

五:什么是生成器

生成器就是自定义的迭代器

六:如何得到自定义的迭代器

在函数内一旦存在yield关键字,调用函数并不会执行函数体代码

会返回一个生成器对象,生成器即自定义的迭代器

def func():
    print(‘第一次‘)
    yield 1
    print(‘第二次‘)
    yield 2
    print(‘第三次‘)
    yield 3
    print(‘第四次‘)


g=func()
print(g)
# 生成器就是迭代器
g.__iter__()
g.__next__()

会触发函数体代码的运行,然后遇到yield停下来,将yield后的值当做本次调用的结果返回

res1=g.__next__()
print(res1)


res2=g.__next__()
print(res2)

res3=g.__next__()
print(res3)

res4=g.__next__()


len(‘aaa‘) # ‘aaa‘.__len__()

next(g)    # g.__next__()
iter(可迭代对象)     # 可迭代对象.__iter__()

七:应用案列

def my_range(start,stop,step=1):
    # print(‘start...‘)
    while start < stop:
        yield start
        start+=step
    # print(‘end....‘)


g=my_range(1,5,2) # 1 3
print(next(g))
print(next(g))
print(next(g))

for n in my_range(1,7,2):
    print(n)

八:总结yield

有了yield关键字,我们就有了一种自定义迭代器的实现方式。

yield可以用于返回值,但不同于return,函数一旦遇到return就结束了,而yield可以保存函数的运行状态挂起函数,用来返回多次值

Python学习————迭代器与生成器

原文:https://www.cnblogs.com/x945669/p/12562016.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!