1 //作者:小黑AWM+MashPlant 2 //注:可以直接把BigInt和一样用cin cout都行,就是高精乘为了速度才用了FFT降低了精度,有需要可以自行更改。 3 #include <cstdio> 4 #include <iostream> 5 #include <cmath> 6 #include <string> 7 #include <cstring> 8 #include <vector> 9 #include <algorithm> 10 using namespace std; 11 const double PI = acos(-1.0); 12 struct Complex{ 13 double x,y; 14 Complex(double _x = 0.0,double _y = 0.0){ 15 x = _x; 16 y = _y; 17 } 18 Complex operator-(const Complex &b)const{ 19 return Complex(x - b.x,y - b.y); 20 } 21 Complex operator+(const Complex &b)const{ 22 return Complex(x + b.x,y + b.y); 23 } 24 Complex operator*(const Complex &b)const{ 25 return Complex(x*b.x - y*b.y,x*b.y + y*b.x); 26 } 27 }; 28 void change(Complex y[],int len){ 29 int i,j,k; 30 for(int i = 1,j = len/2;i<len-1;i++){ 31 if(i < j) swap(y[i],y[j]); 32 k = len/2; 33 while(j >= k){ 34 j = j - k; 35 k = k/2; 36 } 37 if(j < k) j+=k; 38 } 39 } 40 void fft(Complex y[],int len,int on){ 41 change(y,len); 42 for(int h = 2;h <= len;h<<=1){ 43 Complex wn(cos(on*2*PI/h),sin(on*2*PI/h)); 44 for(int j = 0;j < len;j += h){ 45 Complex w(1,0); 46 for(int k = j;k < j + h/2;k++){ 47 Complex u = y[k]; 48 Complex t = w*y[k + h/2]; 49 y[k] = u + t; 50 y[k + h/2] = u - t; 51 w = w*wn; 52 } 53 } 54 } 55 if(on == -1){ 56 for(int i = 0;i < len;i++){ 57 y[i].x /= len; 58 } 59 } 60 } 61 class BigInt 62 { 63 #define Value(x, nega) ((nega) ? -(x) : (x)) 64 #define At(vec, index) ((index) < vec.size() ? vec[(index)] : 0) 65 static int absComp(const BigInt &lhs, const BigInt &rhs) 66 { 67 if (lhs.size() != rhs.size()) 68 return lhs.size() < rhs.size() ? -1 : 1; 69 for (int i = lhs.size() - 1; i >= 0; --i) 70 if (lhs[i] != rhs[i]) 71 return lhs[i] < rhs[i] ? -1 : 1; 72 return 0; 73 } 74 using Long = long long; 75 const static int Exp = 9; 76 const static Long Mod = 1000000000; 77 mutable std::vector<Long> val; 78 mutable bool nega = false; 79 void trim() const 80 { 81 while (val.size() && val.back() == 0) 82 val.pop_back(); 83 if (val.empty()) 84 nega = false; 85 } 86 int size() const { return val.size(); } 87 Long &operator[](int index) const { return val[index]; } 88 Long &back() const { return val.back(); } 89 BigInt(int size, bool nega) : val(size), nega(nega) {} 90 BigInt(const std::vector<Long> &val, bool nega) : val(val), nega(nega) {} 91 92 public: 93 friend std::ostream &operator<<(std::ostream &os, const BigInt &n) 94 { 95 if (n.size()) 96 { 97 if (n.nega) 98 putchar(‘-‘); 99 for (int i = n.size() - 1; i >= 0; --i) 100 { 101 if (i == n.size() - 1) 102 printf("%lld", n[i]); 103 else 104 printf("%0*lld", n.Exp, n[i]); 105 } 106 } 107 else 108 putchar(‘0‘); 109 return os; 110 } 111 friend BigInt operator+(const BigInt &lhs, const BigInt &rhs) 112 { 113 BigInt ret(lhs); 114 return ret += rhs; 115 } 116 friend BigInt operator-(const BigInt &lhs, const BigInt &rhs) 117 { 118 BigInt ret(lhs); 119 return ret -= rhs; 120 } 121 BigInt(Long x = 0) 122 { 123 if (x < 0) 124 x = -x, nega = true; 125 while (x >= Mod) 126 val.push_back(x % Mod), x /= Mod; 127 if (x) 128 val.push_back(x); 129 } 130 BigInt(const char *s) 131 { 132 int bound = 0, pos; 133 if (s[0] == ‘-‘) 134 nega = true, bound = 1; 135 Long cur = 0, pow = 1; 136 for (pos = strlen(s) - 1; pos >= Exp + bound - 1; pos -= Exp, val.push_back(cur), cur = 0, pow = 1) 137 for (int i = pos; i > pos - Exp; --i) 138 cur += (s[i] - ‘0‘) * pow, pow *= 10; 139 for (cur = 0, pow = 1; pos >= bound; --pos) 140 cur += (s[pos] - ‘0‘) * pow, pow *= 10; 141 if (cur) 142 val.push_back(cur); 143 } 144 BigInt &operator=(const char *s){ 145 BigInt n(s); 146 *this = n; 147 return n; 148 } 149 BigInt &operator=(const Long x){ 150 BigInt n(x); 151 *this = n; 152 return n; 153 } 154 friend std::istream &operator>>(std::istream &is, BigInt &n){ 155 string s; 156 is >> s; 157 n=(char*)s.data(); 158 return is; 159 } 160 BigInt &operator+=(const BigInt &rhs) 161 { 162 const int cap = std::max(size(), rhs.size()) + 1; 163 val.resize(cap); 164 int carry = 0; 165 for (int i = 0; i < cap - 1; ++i) 166 { 167 val[i] = Value(val[i], nega) + Value(At(rhs, i), rhs.nega) + carry, carry = 0; 168 if (val[i] >= Mod) 169 val[i] -= Mod, carry = 1; 170 else if (val[i] < 0) 171 val[i] += Mod, carry = -1; 172 } 173 if ((val.back() = carry) == -1) //assert(val.back() == 1 or 0 or -1) 174 { 175 nega = true, val.pop_back(); 176 bool tailZero = true; 177 for (int i = 0; i < cap - 1; ++i) 178 { 179 if (tailZero && val[i]) 180 val[i] = Mod - val[i], tailZero = false; 181 else 182 val[i] = Mod - 1 - val[i]; 183 } 184 } 185 trim(); 186 return *this; 187 } 188 friend BigInt operator-(const BigInt &rhs) 189 { 190 BigInt ret(rhs); 191 ret.nega ^= 1; 192 return ret; 193 } 194 BigInt &operator-=(const BigInt &rhs) 195 { 196 rhs.nega ^= 1; 197 *this += rhs; 198 rhs.nega ^= 1; 199 return *this; 200 } 201 friend BigInt operator*(const BigInt &lhs, const BigInt &rhs) 202 { 203 int len=1; 204 BigInt ll=lhs,rr=rhs; 205 ll.nega = lhs.nega ^ rhs.nega; 206 while(len<2*lhs.size()||len<2*rhs.size())len<<=1; 207 ll.val.resize(len),rr.val.resize(len); 208 Complex x1[len],x2[len]; 209 for(int i=0;i<len;i++){ 210 Complex nx(ll[i],0.0),ny(rr[i],0.0); 211 x1[i]=nx; 212 x2[i]=ny; 213 } 214 fft(x1,len,1); 215 fft(x2,len,1); 216 for(int i = 0 ; i < len; i++) 217 x1[i] = x1[i] * x2[i]; 218 fft( x1 , len , -1 ); 219 for(int i = 0 ; i < len; i++) 220 ll[i] = int( x1[i].x + 0.5 ); 221 for(int i = 0 ; i < len; i++){ 222 ll[i+1]+=ll[i]/Mod; 223 ll[i]%=Mod; 224 } 225 ll.trim(); 226 return ll; 227 } 228 friend BigInt operator*(const BigInt &lhs, const Long &x){ 229 BigInt ret=lhs; 230 bool negat = ( x < 0 ); 231 Long xx = (negat) ? -x : x; 232 ret.nega ^= negat; 233 ret.val.push_back(0); 234 ret.val.push_back(0); 235 for(int i = 0; i < ret.size(); i++) 236 ret[i]*=xx; 237 for(int i = 0; i < ret.size(); i++){ 238 ret[i+1]+=ret[i]/Mod; 239 ret[i] %= Mod; 240 } 241 ret.trim(); 242 return ret; 243 } 244 BigInt &operator*=(const BigInt &rhs) { return *this = *this * rhs; } 245 BigInt &operator*=(const Long &x) { return *this = *this * x; } 246 friend BigInt operator/(const BigInt &lhs, const BigInt &rhs) 247 { 248 static std::vector<BigInt> powTwo{BigInt(1)}; 249 static std::vector<BigInt> estimate; 250 estimate.clear(); 251 if (absComp(lhs, rhs) < 0) 252 return BigInt(); 253 BigInt cur = rhs; 254 int cmp; 255 while ((cmp = absComp(cur, lhs)) <= 0) 256 { 257 estimate.push_back(cur), cur += cur; 258 if (estimate.size() >= powTwo.size()) 259 powTwo.push_back(powTwo.back() + powTwo.back()); 260 } 261 if (cmp == 0) 262 return BigInt(powTwo.back().val, lhs.nega ^ rhs.nega); 263 BigInt ret = powTwo[estimate.size() - 1]; 264 cur = estimate[estimate.size() - 1]; 265 for (int i = estimate.size() - 1; i >= 0 && cmp != 0; --i) 266 if ((cmp = absComp(cur + estimate[i], lhs)) <= 0) 267 cur += estimate[i], ret += powTwo[i]; 268 ret.nega = lhs.nega ^ rhs.nega; 269 return ret; 270 } 271 friend BigInt operator/(const BigInt &num,const Long &x){ 272 bool negat = ( x < 0 ); 273 Long xx = (negat) ? -x : x; 274 BigInt ret; 275 Long k = 0; 276 ret.val.resize( num.size() ); 277 ret.nega = (num.nega ^ negat); 278 for(int i = num.size() - 1 ;i >= 0; i--){ 279 ret[i] = ( k * Mod + num[i]) / xx; 280 k = ( k * Mod + num[i]) % xx; 281 } 282 ret.trim(); 283 return ret; 284 } 285 bool operator==(const BigInt &rhs) const 286 { 287 return nega == rhs.nega && val == rhs.val; 288 } 289 bool operator!=(const BigInt &rhs) const { return nega != rhs.nega || val != rhs.val; } 290 bool operator>=(const BigInt &rhs) const { return !(*this < rhs); } 291 bool operator>(const BigInt &rhs) const { return !(*this <= rhs); } 292 bool operator<=(const BigInt &rhs) const 293 { 294 if (nega && !rhs.nega) 295 return true; 296 if (!nega && rhs.nega) 297 return false; 298 int cmp = absComp(*this, rhs); 299 return nega ? cmp >= 0 : cmp <= 0; 300 } 301 bool operator<(const BigInt &rhs) const 302 { 303 if (nega && !rhs.nega) 304 return true; 305 if (!nega && rhs.nega) 306 return false; 307 return (absComp(*this, rhs) < 0) ^ nega; 308 } 309 void swap(const BigInt &rhs) const 310 { 311 std::swap(val, rhs.val); 312 std::swap(nega, rhs.nega); 313 } 314 }; 315 BigInt ba,bb; 316 int main(){ 317 cin>>ba>>bb; 318 cout << ba + bb << ‘\n‘;//和 319 cout << ba - bb << ‘\n‘;//差 320 cout << ba * bb << ‘\n‘;//积 321 BigInt d; 322 cout << (d = ba / bb) << ‘\n‘;//商 323 cout << ba - d * bb << ‘\n‘;//余 324 return 0; 325 }
原文:https://www.cnblogs.com/sxq-study/p/12562892.html