首页 > 其他 > 详细

FFT

时间:2020-03-27 22:29:37      阅读:79      评论:0      收藏:0      [点我收藏+]

1. 关于FFT

原文:https://blog.csdn.net/czyt1988/article/details/84995295

FFT之后得到的那一串复数是波形对应频率下的幅度特征,注意这个是幅度特征不是幅值。

获取频率:

傅里叶变换并没对频率进行任何计算,频率只与采样率和进行傅里叶变换的点数相关。

FFT变换完的第一个数对应0Hz,即直流分量。后面第二个复数对应的频率是0Hz+频谱分辨率,每隔一个加一次,直到$\frac{N}{2}$个数,频谱分辨率$\Delta f $计算公式如下:\[\Delta f{\rm{ = }}\frac{{Fs}}{N}\]其中$Fs$为采样率,$N$为FFT的点数。

获取幅值:

假设原始信号的峰值为A,那么FFT的结果的每个点(除了第一个点直流分量之外)的模值就是A的$\frac{N}{2}$倍。而第一个点就是直流分量,它的模值是直流分量的$N$倍。

要得出真实幅值,需要把除了第1个点(i=1)以及最后一个点(i=N/2)除以N以外,其余点需要用求得的模除以$\frac{N}{2}$。实际应用中,只有$i = 1$~$\frac{N}{2}$是有用的。

2. MATLAB

参考:使用 FFT 进行频谱分析

函数:

function [Fre,Amp,Ph] = FFT(data,Fs,ampDB,isDetrend)
    % 快速傅里叶变换
    % data:波形数据
    % Fs:采样率
    % ampDB:逻辑值,是否进行对数变换,默认为false
    % isDetrend:逻辑值,是否进行去均值处理,默认为true
    % 返回[Fre:频率,Amp:幅值,Ph:相位(弧度)]
    if nargin<3
        ampDB=false;
        isDetrend=true;
    elseif nargin<4
        isDetrend=true;
    end
    n=length(data);
    if mod(n,2)==1
        n=n-1;
        data=data(1:n);
    end
    if isDetrend
        data=detrend(data);
    end
    Y = fft(data);
    %频率
    Fre=(0:n-1)*Fs/n;
    Fre=Fre(1:n/2);
    %幅值
    Amp=abs(Y(1:n/2));
    Amp([1,n/2])=Amp([1,n/2])/n;
    Amp(2:n/2-1)=Amp(2:n/2-1)/(n/2);
    if ampDB
        Amp=20*log(Amp);
        Amp(Amp<0)=0;
    end
    %相位
    Ph=angle(Y(1:n/2));
end

调用示例:

%生成信号
N = 256;
Fs = 150;
t = (0:N-1)./Fs;
wave = 5 + 8*cos(2*pi*10.*t) ...
    + 4*cos(2*pi*20.*t + deg2rad(30)) ...
    + 2*cos(2*pi*30.*t + deg2rad(60)) ...
    + 1*cos(2*pi*40.*t + deg2rad(90)) ...
    + rand(1,length(t)) ...
    ;

[Fre,Amp,~]=FFT(wave,Fs,false,false);
plot(t,wave);

局部放大:

技术分享图片

 

plot(Fre,Amp);

技术分享图片

 

3. Simulink

以全波桥式整流电路(Full-Wave Bridge Rectifier)为例。

在MATLAB命令窗口中运行ssc_bridge_rectifier即可打开示例。

技术分享图片

 

改为固定步长:

技术分享图片

 

仿真时间0.15s:

技术分享图片

 

示波器数据保存到工作区,命名为Vout:

技术分享图片

运行仿真:

技术分享图片

 

工作区分析:

[FreV,AmpV,PhV]=FFT(Vout.signals.values(201:1501),1e4);
plot(FreV,AmpV);
xlim([0 1000]);

技术分享图片

 

powergui→Tools→FFT Analysis:

技术分享图片

选取对应的信号输入,开始时间,基频,周期等参数即可得到FFT分析结果,同时还有总谐波失真THD。

技术分享图片

 

可以看到此结果与前面的一致。

4. R

函数:

FFT<-function(data,Fs,ampDB=FALSE,isDetrend=TRUE)
{
  
  # 快速傅里叶变换
  # data:波形数据
  # Fs:采样率
  # ampDB:逻辑值,是否进行对数变换,默认为false
  # isDetrend:逻辑值,是否进行去均值处理,默认为true
  # 返回[Fre:频率,Amp:幅值,Ph:相位(弧度)]
  n=length(data)
  if(n%%2==1)
  {
    n=n-1
    data=data[1:n]
  }
  if(isDetrend)
  {
    data<-scale(data,center=T,scale=F)
  }
  library(stats)
  Y = fft(data)
  #频率
  Fre=(0:(n-1))*Fs/n
  Fre=Fre[1:(n/2)]
  #幅值
  Amp=Mod(Y[1:(n/2)])
  Amp[c(1,n/2)]=Amp[c(1,n/2)]/n
  Amp[2:(n/2-1)]=Amp[2:(n/2-1)]/(n/2)
  if(ampDB)
  {
    Amp=20*log(Amp)
    Amp[Amp<0]=0
  }
  #相位
  Ph=Arg(Y[1:(n/2)])
  result<-data.frame(Fre=Fre,Amp=Amp,Ph=Ph)
  return(result)
}

示例:

#生成信号
deg2rad<-function(a)
{
  return(a*pi/180)
}
N = 256
Fs = 150
t = (0:(N-1))/Fs
wave = 5 + 8*cos(2*pi*10.*t) + 
  4*cos(2*pi*20.*t + deg2rad(30)) + 
  2*cos(2*pi*30.*t + deg2rad(60)) + 
  1*cos(2*pi*40.*t + deg2rad(90)) + 
  rnorm(length(t))

result=FFT(wave,Fs,isDetrend=FALSE)
library(ggplot2)
theme_set(theme_light())
qplot(t,wave,geom="line")
ggplot(data=result,aes(Fre,Amp))+geom_line()

技术分享图片

 

技术分享图片

 

Shiny示例:

FFT

原文:https://www.cnblogs.com/dingdangsunny/p/12573744.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!