给你一张图 判断是否任意2点u,v 满足要么u->v 可达 或者 v->u 可达 相互可达也可以
强连通分量缩点 在做拓扑 拓扑唯一 说明都互相可达
有空放弃用矩阵表示的拓扑 浪费时间 浪费空间
#include <cstdio>
#include <cstring>
#include <vector>
#include <stack>
#include <algorithm>
using namespace std;
const int maxn = 1010;
vector <int> G[maxn];
int pre[maxn];
int low[maxn];
int sccno[maxn];
int dfs_clock;
int scc_cnt;
stack <int> S;
int n, m;
int degree[maxn];
int cnt[maxn];
int Topo[maxn][maxn];
void dfs(int u)
{
pre[u] = low[u] = ++dfs_clock;
S.push(u);
for(int i = 0; i < G[u].size(); i++)
{
int v = G[u][i];
if(!pre[v])
{
dfs(v);
low[u] = min(low[u], low[v]);
}
else if(!sccno[v])
low[u] = min(low[u], pre[v]);
}
if(pre[u] == low[u])
{
scc_cnt++;
while(1)
{
cnt[scc_cnt]++;
int x = S.top();
S.pop();
sccno[x] = scc_cnt;
if(x == u)
break;
}
}
}
void find_scc()
{
dfs_clock = scc_cnt = 0;
memset(sccno, 0, sizeof(sccno));
memset(pre, 0, sizeof(pre));
memset(cnt, 0, sizeof(cnt));
for(int i = 1; i <= n; i++)
if(!pre[i])
dfs(i);
}
bool topo()
{
for(int i = 1; i <= scc_cnt; i++)
{
int ans = 0;
for(int j = 1; j <= scc_cnt; j++)
{
if(!degree[j])
ans++;
if(ans > 1)
return false;
}
for(int j = 1; j <= scc_cnt; j++)
{
if(!degree[j])
{
degree[j]--;
for(int k = 1; k <= scc_cnt; k++)
{
if(Topo[k][j])
degree[k]--;
}
break;
}
}
}
return true;
}
int main()
{
int T;
scanf("%d", &T);
while(T--)
{
scanf("%d %d", &n, &m);
for(int i = 1; i <= n; i++)
G[i].clear();
while(m--)
{
int u, v;
scanf("%d %d", &u, &v);
G[u].push_back(v);
}
find_scc();
memset(degree, 0, sizeof(degree));
memset(Topo, 0, sizeof(Topo));
for(int i = 1; i <= n; i++)
{
for(int j = 0; j < G[i].size(); j++)
{
int v = G[i][j];
if(sccno[i] != sccno[v])
{
degree[sccno[i]]++;
Topo[sccno[i]][sccno[v]] = 1;
}
}
}
if(topo())
printf("Yes\n");
else
printf("No\n");
}
return 0;
}
POJ 2762 Going from u to v or from v to u? / 强连通分量&&拓扑
原文:http://blog.csdn.net/u011686226/article/details/19346643