给你一张图 判断是否任意2点u,v 满足要么u->v 可达 或者 v->u 可达 相互可达也可以
强连通分量缩点 在做拓扑 拓扑唯一 说明都互相可达
有空放弃用矩阵表示的拓扑 浪费时间 浪费空间
#include <cstdio> #include <cstring> #include <vector> #include <stack> #include <algorithm> using namespace std; const int maxn = 1010; vector <int> G[maxn]; int pre[maxn]; int low[maxn]; int sccno[maxn]; int dfs_clock; int scc_cnt; stack <int> S; int n, m; int degree[maxn]; int cnt[maxn]; int Topo[maxn][maxn]; void dfs(int u) { pre[u] = low[u] = ++dfs_clock; S.push(u); for(int i = 0; i < G[u].size(); i++) { int v = G[u][i]; if(!pre[v]) { dfs(v); low[u] = min(low[u], low[v]); } else if(!sccno[v]) low[u] = min(low[u], pre[v]); } if(pre[u] == low[u]) { scc_cnt++; while(1) { cnt[scc_cnt]++; int x = S.top(); S.pop(); sccno[x] = scc_cnt; if(x == u) break; } } } void find_scc() { dfs_clock = scc_cnt = 0; memset(sccno, 0, sizeof(sccno)); memset(pre, 0, sizeof(pre)); memset(cnt, 0, sizeof(cnt)); for(int i = 1; i <= n; i++) if(!pre[i]) dfs(i); } bool topo() { for(int i = 1; i <= scc_cnt; i++) { int ans = 0; for(int j = 1; j <= scc_cnt; j++) { if(!degree[j]) ans++; if(ans > 1) return false; } for(int j = 1; j <= scc_cnt; j++) { if(!degree[j]) { degree[j]--; for(int k = 1; k <= scc_cnt; k++) { if(Topo[k][j]) degree[k]--; } break; } } } return true; } int main() { int T; scanf("%d", &T); while(T--) { scanf("%d %d", &n, &m); for(int i = 1; i <= n; i++) G[i].clear(); while(m--) { int u, v; scanf("%d %d", &u, &v); G[u].push_back(v); } find_scc(); memset(degree, 0, sizeof(degree)); memset(Topo, 0, sizeof(Topo)); for(int i = 1; i <= n; i++) { for(int j = 0; j < G[i].size(); j++) { int v = G[i][j]; if(sccno[i] != sccno[v]) { degree[sccno[i]]++; Topo[sccno[i]][sccno[v]] = 1; } } } if(topo()) printf("Yes\n"); else printf("No\n"); } return 0; }
POJ 2762 Going from u to v or from v to u? / 强连通分量&&拓扑
原文:http://blog.csdn.net/u011686226/article/details/19346643