首页 > 编程语言 > 详细

c++实现单纯形法现行规划问题的求解

时间:2020-04-01 22:45:55      阅读:101      评论:0      收藏:0      [点我收藏+]

在本程序中默认该现行规划问题有最优解

针对此问题:

技术分享图片

 

  1 #include<iostream>
  2 using namespace std;
  3 
  4 int check(float *sigema, int m) {
  5     for (int i = 1; i <= m ; i++) {
  6         if (sigema[i] > 0) {
  7             return 0;
  8         }
  9     }
 10     return 1;
 11 }
 12 
 13 //此程序已经化为标准型的线性规划问题中,且默认有最优解
 14 int main(int argc, char* argv[])
 15 {
 16     //数据输入部分
 17     int m, n;
 18     cout << "请输入变量个数:";
 19     cin >> m;
 20     cout << "请输入不等式个数:";
 21     cin >> n;
 22     float **matrix = new float*[n + 1];      //系数矩阵
 23     for (int i = 1; i <= n; i++) {
 24         matrix[i] = new float[m + 2];
 25     }
 26     float *cj = new float[m + 1];
 27     float *cB = new float[n + 1];   //基变量系数
 28     int *XB = new int[n + 1];   //用来标注基变量x的下标
 29     float *b = new float[n + 1];
 30     float *sigema = new float[n + 1];
 31     float *sita = new float[n + 1];
 32     //初始化
 33     for (int i = 0; i <= m; i++) {
 34         cj[i] = 0;
 35     }
 36     for (int i = 0; i <= n; i++) {
 37         cB[i] = 0;
 38         XB[i] = 0;
 39         b[i] = 0;
 40         sigema[i] = 0;
 41         sita[i] = 0;
 42     }
 43     cout << "请输入目标函数系数(用空格间开):" << endl;
 44     for (int i = 1; i <= m; i++) {
 45         cin >> cj[i];
 46     }
 47     cout << "请输入各不等式的系数和常量(用空格间开):" << endl;
 48     for (int i = 1; i <= n; i++) {
 49         cout << "不等式" << i << ": ";
 50         for (int j = 1; j <= m + 1; j++) {
 51             cin >> matrix[i][j];
 52         }
 53     }
 54     cout << "请输入目标函数中基变量下标:" << endl;
 55     for (int i = 1; i <= n; i++) {
 56         cin >> XB[i];
 57         cB[i] = cj[XB[i]];
 58         //常量
 59         b[i] = matrix[i][m + 1];
 60     }
 61 
 62     //计算检验数
 63     for (int i = 1; i <= m; i++) {
 64         sigema[i] = cj[i];
 65         for (int j = 1; j <= n; j++) {
 66             sigema[i] -= cB[j] * matrix[j][i];
 67         }
 68     }
 69 
 70     while (check(sigema, m) == 0) {
 71         //寻找入基变量
 72     float maxn = sigema[1];
 73     int sigema_xindex = 0;
 74     float sigema_xcoefficient = 0;
 75     for (int i = 1; i <= m; i++) {
 76         if (maxn <= sigema[i]) {
 77             maxn = sigema[i];
 78             sigema_xindex = i;
 79             sigema_xcoefficient = cj[i];
 80         }
 81     }
 82     //计算sita
 83     for (int i = 1; i <= n; i++) {
 84         if (matrix[i][sigema_xindex] > 0) {
 85             sita[i] = b[i] / matrix[i][sigema_xindex];
 86         }
 87         else {
 88             sita[i] = 9999; //表示sita值为负数
 89         }
 90     }
 91     //寻找出基变量
 92     float minn = sita[1];
 93     int sita_xindex = 0;
 94     for (int i = 1; i <= n; i++) {
 95         if (minn >= sita[i] && sita[i] > 0) {
 96             minn = sita[i];
 97             sita_xindex = i;
 98         }
 99     }
100     //入基出基变换,先入基再出基
101     //入基操作
102     for (int i = 1; i <= n; i++) {
103         if (i == sita_xindex) {
104             XB[i] = sigema_xindex;
105             cB[i] = sigema_xcoefficient;
106             break;
107         }
108     }
109     //出基计算  
110     //化1
111     //cout << endl << "此处为化1的结果------" << endl;
112     float mul1 = matrix[sita_xindex][sigema_xindex];
113     for (int i = 1; i <= m; i++) {
114         matrix[sita_xindex][i] /= mul1;
115     }
116     b[sita_xindex] /= mul1;
117     //化0
118     //cout << endl << "此处为化0的结果------" << endl;
119     for (int i = 1; i <= n; i++) {
120         if (i == sita_xindex) {
121             continue;
122         }
123         float mul2 = matrix[i][sigema_xindex] / matrix[sita_xindex][sigema_xindex];
124         for (int j = 1; j <= m; j++) {
125             matrix[i][j] -= (matrix[sita_xindex][j] * mul2);
126         }
127         b[i] -= (b[sita_xindex] * mul2);
128     }
129     for (int i = 1; i <= n; i++) {
130         if (i == sita_xindex) {
131             continue;
132         }
133     }
134     for (int i = 1; i <= m; i++) {
135         sigema[i] = cj[i];
136         for (int j = 1; j <= n; j++) {
137             sigema[i] -= cB[j] * matrix[j][i];
138         }
139     }
140     }
141     float MaxZ = 0;
142     float *result = new float[m + 1];
143     for (int i = 0; i <= m; i++) {
144         result[i] = 0;
145     }
146     for (int i = 1; i <= n; i++) {
147         result[XB[i]] = b[i];
148     }
149     cout << "最优解为:X = (";
150     for (int i = 1; i < m; i++) {
151         cout << result[i] << ",";
152     }
153     cout << result[m] << ")" << endl;
154     for (int i = 1; i <= m; i++) {
155         MaxZ += result[i] * cj[i];
156     }
157     cout << "最优值为:MzxZ = " << MaxZ;
158     return 0;
159 }

 

程序运行结果:

技术分享图片

 

c++实现单纯形法现行规划问题的求解

原文:https://www.cnblogs.com/zz-1120-wtenlb/p/12616481.html

(1)
(1)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!